Artículos de revistas
On the variations of the Betti numbers of regular levels of Morse flows
Fecha
2011Registro en:
TOPOLOGY AND ITS APPLICATIONS, v.158, n.6, p.761-774, 2011
0166-8641
10.1016/j.topol.2011.01.021
Autor
BERTOLIM, M. A.
REZENDE, K. A. de
MANZOLI NETO, O.
VAGO, G. M.
Institución
Resumen
We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Beth numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z/pZ with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds. (C) 2011 Elsevier B.V. All rights reserved.