dc.creatorBERGAMASCO, Adalberto P.
dc.creatorZANI, Sergio Luis
dc.date.accessioned2012-10-20T03:33:01Z
dc.date.accessioned2018-07-04T15:38:25Z
dc.date.available2012-10-20T03:33:01Z
dc.date.available2018-07-04T15:38:25Z
dc.date.created2012-10-20T03:33:01Z
dc.date.issued2008
dc.identifierCOMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, v.33, n.5, p.933-941, 2008
dc.identifier0360-5302
dc.identifierhttp://producao.usp.br/handle/BDPI/28878
dc.identifier10.1080/03605300701833565
dc.identifierhttp://dx.doi.org/10.1080/03605300701833565
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625520
dc.description.abstractWe consider real analytic involutive structures V, of co-rank one, defined on a real analytic paracompact orientable manifold M. To each such structure we associate certain connected subsets of M which we call the level sets of V. We prove that analytic regularity propagates along them. With a further assumption on the level sets of V we characterize the global analytic hypoellipticity of a differential operator naturally associated to V. As an application we study a case of tube structures.
dc.languageeng
dc.publisherTAYLOR & FRANCIS INC
dc.relationCommunications in Partial Differential Equations
dc.rightsCopyright TAYLOR & FRANCIS INC
dc.rightsrestrictedAccess
dc.subjectcomplex vector fields
dc.subjectglobal analytic hypoellipticity
dc.subjectinvolutive structures
dc.subjectpropagation of analytic singularities
dc.subjectsheaf cohomology
dc.titleGlobal analytic regularity for structures of co-rank one
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución