dc.creator | PAIVA, Francisco Odair de | |
dc.creator | MASSA, Eugenio | |
dc.date.accessioned | 2012-10-20T03:32:59Z | |
dc.date.accessioned | 2018-07-04T15:38:23Z | |
dc.date.available | 2012-10-20T03:32:59Z | |
dc.date.available | 2018-07-04T15:38:23Z | |
dc.date.created | 2012-10-20T03:32:59Z | |
dc.date.issued | 2008 | |
dc.identifier | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.342, n.1, p.638-650, 2008 | |
dc.identifier | 0022-247X | |
dc.identifier | http://producao.usp.br/handle/BDPI/28871 | |
dc.identifier | 10.1016/j.jmaa.2007.12.053 | |
dc.identifier | http://dx.doi.org/10.1016/j.jmaa.2007.12.053 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1625513 | |
dc.description.abstract | We consider the Dirichlet problem for the equation -Delta u = lambda u +/- (x, u) + h(x) in a bounded domain, where f has a sublinear growth and h is an element of L-2. We find suitable conditions on f and It in order to have at least two solutions for X near to an eigenvalue of -Delta. A typical example to which our results apply is when f (x, u) behaves at infinity like a(x)vertical bar u vertical bar(q-2)u, with M > a(x) > delta > 0, and I < q < 2. (C) 2007 Elsevier Inc. All rights reserved. | |
dc.language | eng | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.relation | Journal of Mathematical Analysis and Applications | |
dc.rights | Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.rights | restrictedAccess | |
dc.subject | semilinear elliptic equations | |
dc.subject | multiplicity of solutions | |
dc.subject | quasi resonant problems | |
dc.subject | saddle point geometry | |
dc.title | Semilinear elliptic problems near resonance with a nonprincipal eigenvalue | |
dc.type | Artículos de revistas | |