dc.creatorPAIVA, Francisco Odair de
dc.creatorMASSA, Eugenio
dc.date.accessioned2012-10-20T03:32:59Z
dc.date.accessioned2018-07-04T15:38:23Z
dc.date.available2012-10-20T03:32:59Z
dc.date.available2018-07-04T15:38:23Z
dc.date.created2012-10-20T03:32:59Z
dc.date.issued2008
dc.identifierJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.342, n.1, p.638-650, 2008
dc.identifier0022-247X
dc.identifierhttp://producao.usp.br/handle/BDPI/28871
dc.identifier10.1016/j.jmaa.2007.12.053
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2007.12.053
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625513
dc.description.abstractWe consider the Dirichlet problem for the equation -Delta u = lambda u +/- (x, u) + h(x) in a bounded domain, where f has a sublinear growth and h is an element of L-2. We find suitable conditions on f and It in order to have at least two solutions for X near to an eigenvalue of -Delta. A typical example to which our results apply is when f (x, u) behaves at infinity like a(x)vertical bar u vertical bar(q-2)u, with M > a(x) > delta > 0, and I < q < 2. (C) 2007 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Mathematical Analysis and Applications
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectsemilinear elliptic equations
dc.subjectmultiplicity of solutions
dc.subjectquasi resonant problems
dc.subjectsaddle point geometry
dc.titleSemilinear elliptic problems near resonance with a nonprincipal eigenvalue
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución