dc.creatorMATTOS, Denise de
dc.creatorSANTOS, Edivaldo L. dos
dc.date.accessioned2012-10-20T03:32:54Z
dc.date.accessioned2018-07-04T15:38:19Z
dc.date.available2012-10-20T03:32:54Z
dc.date.available2018-07-04T15:38:19Z
dc.date.created2012-10-20T03:32:54Z
dc.date.issued2009
dc.identifierTOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, TORUN, v.33, n.1, p.105-119, 2009
dc.identifier1230-3429
dc.identifierhttp://producao.usp.br/handle/BDPI/28854
dc.identifierhttp://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-33-1.html
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625496
dc.description.abstractLet X be a compact Hausdorff space, phi: X -> S(n) a continuous map into the n-sphere S(n) that induces a nonzero homomorphism phi*: H(n)(S(n); Z(p)) -> H(n)(X; Z(p)), Y a k-dimensional CW-complex and f: X -> a continuous map. Let G a finite group which acts freely on S`. Suppose that H subset of G is a normal cyclic subgroup of a prime order. In this paper, we define and we estimate the cohomological dimension of the set A(phi)(f, H, G) of (H, G)-coincidence points of f relative to phi.
dc.languageeng
dc.publisherJULIUSZ SCHAUDER CTR NONLINEAR STUDIES
dc.publisherTORUN
dc.relationTopological Methods in Nonlinear Analysis
dc.rightsCopyright JULIUSZ SCHAUDER CTR NONLINEAR STUDIES
dc.rightsclosedAccess
dc.subjectBorsuk-Ulam theorem
dc.subjectZ(p)-index
dc.subject(H, G)-coincidence
dc.subjectfree actions
dc.titleON NONSYMMETRIC THEOREMS FOR (H, G)-COINCIDENCES
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución