dc.creator | SILVA, Paulo L. Dattori da | |
dc.date.accessioned | 2012-10-20T03:32:54Z | |
dc.date.accessioned | 2018-07-04T15:38:19Z | |
dc.date.available | 2012-10-20T03:32:54Z | |
dc.date.available | 2018-07-04T15:38:19Z | |
dc.date.created | 2012-10-20T03:32:54Z | |
dc.date.issued | 2009 | |
dc.identifier | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.351, n.2, p.543-555, 2009 | |
dc.identifier | 0022-247X | |
dc.identifier | http://producao.usp.br/handle/BDPI/28853 | |
dc.identifier | 10.1016/j.jmaa.2008.10.039 | |
dc.identifier | http://dx.doi.org/10.1016/j.jmaa.2008.10.039 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1625495 | |
dc.description.abstract | The goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved. | |
dc.language | eng | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.relation | Journal of Mathematical Analysis and Applications | |
dc.rights | Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.rights | restrictedAccess | |
dc.subject | Global solvability | |
dc.subject | Solvability near the characteristic set | |
dc.subject | Complex vector fields | |
dc.subject | Condition (P) | |
dc.subject | Sussmann orbits | |
dc.subject | Propagation of singularities | |
dc.subject | Bicharacteristics | |
dc.title | Nonexistence of global solutions for a class of complex vector fields on two-torus | |
dc.type | Artículos de revistas | |