dc.creatorSILVA, Paulo L. Dattori da
dc.date.accessioned2012-10-20T03:32:54Z
dc.date.accessioned2018-07-04T15:38:19Z
dc.date.available2012-10-20T03:32:54Z
dc.date.available2018-07-04T15:38:19Z
dc.date.created2012-10-20T03:32:54Z
dc.date.issued2009
dc.identifierJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.351, n.2, p.543-555, 2009
dc.identifier0022-247X
dc.identifierhttp://producao.usp.br/handle/BDPI/28853
dc.identifier10.1016/j.jmaa.2008.10.039
dc.identifierhttp://dx.doi.org/10.1016/j.jmaa.2008.10.039
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625495
dc.description.abstractThe goal of this paper is study the global solvability of a class of complex vector fields of the special form L = partial derivative/partial derivative t + (a + ib)(x)partial derivative/partial derivative x, a, b epsilon C(infinity) (S(1) ; R), defined on two-torus T(2) congruent to R(2)/2 pi Z(2). The kernel of transpose operator L is described and the solvability near the characteristic set is also studied. (c) 2008 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Mathematical Analysis and Applications
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectGlobal solvability
dc.subjectSolvability near the characteristic set
dc.subjectComplex vector fields
dc.subjectCondition (P)
dc.subjectSussmann orbits
dc.subjectPropagation of singularities
dc.subjectBicharacteristics
dc.titleNonexistence of global solutions for a class of complex vector fields on two-torus
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución