dc.creatorITURRIAGA, Leonelo
dc.creatorMASSA, Eugenio
dc.creatorSANCHEZ, Justino
dc.creatorUBILLA, Pedro
dc.date.accessioned2012-10-20T03:32:46Z
dc.date.accessioned2018-07-04T15:38:13Z
dc.date.available2012-10-20T03:32:46Z
dc.date.available2018-07-04T15:38:13Z
dc.date.created2012-10-20T03:32:46Z
dc.date.issued2010
dc.identifierJOURNAL OF DIFFERENTIAL EQUATIONS, v.248, n.2, p.309-327, 2010
dc.identifier0022-0396
dc.identifierhttp://producao.usp.br/handle/BDPI/28827
dc.identifier10.1016/j.jde.2009.08.008
dc.identifierhttp://dx.doi.org/10.1016/j.jde.2009.08.008
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625469
dc.description.abstractUsing a combination of several methods, such as variational methods. the sub and supersolutions method, comparison principles and a priori estimates. we study existence, multiplicity, and the behavior with respect to lambda of positive solutions of p-Laplace equations of the form -Delta(p)u = lambda h(x, u), where the nonlinear term has p-superlinear growth at infinity, is nonnegative, and satisfies h(x, a(x)) = 0 for a suitable positive function a. In order to manage the asymptotic behavior of the solutions we extend a result due to Redheffer and we establish a new Liouville-type theorem for the p-Laplacian operator, where the nonlinearity involved is superlinear, nonnegative, and has positive zeros. (C) 2009 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Differential Equations
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectMultiplicity of positive solutions
dc.subjectp-Laplacian
dc.subjectLiouville-type theorems
dc.subjectAsymptotic behavior
dc.subjectVariational methods
dc.subjectComparison principle
dc.titlePositive solutions of the p-Laplacian involving a superlinear nonlinearity with zeros
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución