dc.creatorCAMPOS, Jose Eduardo Prado Pires de
dc.date.accessioned2012-10-20T03:32:45Z
dc.date.accessioned2018-07-04T15:38:12Z
dc.date.available2012-10-20T03:32:45Z
dc.date.available2018-07-04T15:38:12Z
dc.date.created2012-10-20T03:32:45Z
dc.date.issued2010
dc.identifierTOPOLOGY AND ITS APPLICATIONS, v.157, n.3, p.605-614, 2010
dc.identifier0166-8641
dc.identifierhttp://producao.usp.br/handle/BDPI/28824
dc.identifier10.1016/j.topol.2009.11.001
dc.identifierhttp://dx.doi.org/10.1016/j.topol.2009.11.001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625466
dc.description.abstractIn this paper we provide a complete algebraic invariant of link-homotopy, that is, an algebraic invariant that distinguishes two links if and only if they are link-homotopic. The paper establishes a connection between the ""peripheral structures"" approach to link-homotopy taken by Milnor, Levine and others, and the string link action approach taken by Habegger and Lin. (C) 2009 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationTopology and Its Applications
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectLink
dc.subjectString link
dc.subjectLink-homotopy
dc.subjectBraid
dc.titleDistinguishing links up to link-homotopy by algebraic methods
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución