Artículos de revistas
C(0) and bi-Lipschitz K-equivalence of mappings
Fecha
2011Registro en:
MATHEMATISCHE ZEITSCHRIFT, NEW YORK, v.269, n.1/Fev, p.293-308, 2011
0025-5874
10.1007/s00209-010-0728-z
Autor
RUAS, Maria Aparecida Soares
VALETTE, Guillaume
Institución
Resumen
In this paper we investigate the classification of mappings up to K-equivalence. We give several results of this type. We study semialgebraic deformations up to semialgebraic C(0) K-equivalence and bi-Lipschitz K-equivalence. We give an algebraic criterion for bi-Lipschitz K-triviality in terms of semi-integral closure (Theorem 3.5). We also give a new proof of a result of Nishimura: we show that two germs of smooth mappings f, g : R(n) -> R(n), finitely determined with respect to K-equivalence are C(0)-K-equivalent if and only if they have the same degree in absolute value.