dc.creatorFENILLE, Marcio C.
dc.creatorManzoli Neto, Oziride
dc.date.accessioned2012-10-20T03:32:40Z
dc.date.accessioned2018-07-04T15:38:09Z
dc.date.available2012-10-20T03:32:40Z
dc.date.available2018-07-04T15:38:09Z
dc.date.created2012-10-20T03:32:40Z
dc.date.issued2010
dc.identifierTOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, TORUN, v.36, n.2, p.327-352, 2010
dc.identifier1230-3429
dc.identifierhttp://producao.usp.br/handle/BDPI/28811
dc.identifierhttps://www.tmna.ncu.pl/static/archives/vol-36-2.html
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625453
dc.description.abstractIn this paper we study when the minimal number of roots of the so-called convenient maps horn two-dimensional CW complexes into closed surfaces is zero We present several necessary and sufficient conditions for such a map to be root free Among these conditions we have the existence of specific fittings for the homomorphism induced by the map on the fundamental groups, existence of the so-called mutation of a specific homomorphism also induced by the map, and existence of particular solutions of specific systems of equations on free groups over specific subgroups
dc.languageeng
dc.publisherJULIUSZ SCHAUDER CTR NONLINEAR STUDIES
dc.publisherTORUN
dc.relationTopological Methods in Nonlinear Analysis
dc.rightsCopyright JULIUSZ SCHAUDER CTR NONLINEAR STUDIES
dc.rightsclosedAccess
dc.subjectRoot problem
dc.subjectconvenient map
dc.subjectmutation of homomorphism
dc.subjectsymbolic mutation
dc.subjectsystem of equation on free group
dc.titleROOT PROBLEM FOR CONVENIENT MAPS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución