dc.creator | CARVALHO, Alexandre N. | |
dc.creator | LANGA, Jose A. | |
dc.creator | ROBINSON, James C. | |
dc.date.accessioned | 2012-10-20T03:32:40Z | |
dc.date.accessioned | 2018-07-04T15:38:09Z | |
dc.date.available | 2012-10-20T03:32:40Z | |
dc.date.available | 2018-07-04T15:38:09Z | |
dc.date.created | 2012-10-20T03:32:40Z | |
dc.date.issued | 2010 | |
dc.identifier | JOURNAL OF DIFFERENTIAL EQUATIONS, v.249, n.12, p.3099-3109, 2010 | |
dc.identifier | 0022-0396 | |
dc.identifier | http://producao.usp.br/handle/BDPI/28810 | |
dc.identifier | 10.1016/j.jde.2010.09.032 | |
dc.identifier | http://dx.doi.org/10.1016/j.jde.2010.09.032 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1625452 | |
dc.description.abstract | We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved. | |
dc.language | eng | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.relation | Journal of Differential Equations | |
dc.rights | Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.rights | restrictedAccess | |
dc.subject | Global attractors | |
dc.subject | Negatively invariant sets | |
dc.subject | Box-counting dimension | |
dc.subject | Banach-Mazur distance | |
dc.title | Finite-dimensional global attractors in Banach spaces | |
dc.type | Artículos de revistas | |