dc.creatorCARVALHO, Alexandre N.
dc.creatorLANGA, Jose A.
dc.creatorROBINSON, James C.
dc.date.accessioned2012-10-20T03:32:40Z
dc.date.accessioned2018-07-04T15:38:09Z
dc.date.available2012-10-20T03:32:40Z
dc.date.available2018-07-04T15:38:09Z
dc.date.created2012-10-20T03:32:40Z
dc.date.issued2010
dc.identifierJOURNAL OF DIFFERENTIAL EQUATIONS, v.249, n.12, p.3099-3109, 2010
dc.identifier0022-0396
dc.identifierhttp://producao.usp.br/handle/BDPI/28810
dc.identifier10.1016/j.jde.2010.09.032
dc.identifierhttp://dx.doi.org/10.1016/j.jde.2010.09.032
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625452
dc.description.abstractWe provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE
dc.relationJournal of Differential Equations
dc.rightsCopyright ACADEMIC PRESS INC ELSEVIER SCIENCE
dc.rightsrestrictedAccess
dc.subjectGlobal attractors
dc.subjectNegatively invariant sets
dc.subjectBox-counting dimension
dc.subjectBanach-Mazur distance
dc.titleFinite-dimensional global attractors in Banach spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución