dc.creatorBARBOT, Thierry
dc.creatorMAQUERA, Carlos
dc.date.accessioned2012-10-20T03:32:39Z
dc.date.accessioned2018-07-04T15:38:08Z
dc.date.available2012-10-20T03:32:39Z
dc.date.available2018-07-04T15:38:08Z
dc.date.created2012-10-20T03:32:39Z
dc.date.issued2011
dc.identifierDISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, v.29, n.3, p.803-822, 2011
dc.identifier1078-0947
dc.identifierhttp://producao.usp.br/handle/BDPI/28807
dc.identifier10.3934/dcds.2011.29.803
dc.identifierhttp://dx.doi.org/10.3934/dcds.2011.29.803
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625449
dc.description.abstractIn this paper, we consider codimension one Anosov actions of R(k), k >= 1, on closed connected orientable manifolds of dimension n vertical bar k with n >= 3. We show that the fundamental group of the ambient manifold is solvable if and only if the weak foliation of codimension one is transversely affine. We also study the situation where one 1-parameter subgroup of R(k) admits a cross-section, and compare this to the case where the whole action is transverse to a fibration over a manifold of dimension n. As a byproduct, generalizing a Theorem by Ghys in the case k = 1, we show that, under some assumptions about the smoothness of the sub-bundle E(ss) circle plus E(uu), and in the case where the action preserves the volume, it is topologically equivalent to a suspension of a linear Anosov action of Z(k) on T(n).
dc.languageeng
dc.publisherAMER INST MATHEMATICAL SCIENCES
dc.relationDiscrete and Continuous Dynamical Systems
dc.rightsCopyright AMER INST MATHEMATICAL SCIENCES
dc.rightsrestrictedAccess
dc.subjectAnosov action
dc.subjectVerjovsky conjecture
dc.titleON INTEGRABLE CODIMENSION ONE ANOSOV ACTIONS OF R(k)
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución