dc.creator | CARABALLO, Tomas | |
dc.creator | CARVALHO, Alexandre N. | |
dc.creator | LANGA, Jose A. | |
dc.creator | RIVERO, Felipe | |
dc.date.accessioned | 2012-10-20T03:32:38Z | |
dc.date.accessioned | 2018-07-04T15:38:08Z | |
dc.date.available | 2012-10-20T03:32:38Z | |
dc.date.available | 2018-07-04T15:38:08Z | |
dc.date.created | 2012-10-20T03:32:38Z | |
dc.date.issued | 2011 | |
dc.identifier | NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v.74, n.6, p.2272-2283, 2011 | |
dc.identifier | 0362-546X | |
dc.identifier | http://producao.usp.br/handle/BDPI/28806 | |
dc.identifier | 10.1016/j.na.2010.11.032 | |
dc.identifier | http://dx.doi.org/10.1016/j.na.2010.11.032 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1625448 | |
dc.description.abstract | In this paper we consider the strongly damped wave equation with time-dependent terms u(tt) - Delta u - gamma(t)Delta u(t) + beta(epsilon)(t)u(t) = f(u), in a bounded domain Omega subset of R(n), under some restrictions on beta(epsilon)(t), gamma(t) and growth restrictions on the nonlinear term f. The function beta(epsilon)(t) depends on a parameter epsilon, beta(epsilon)(t) -> 0. We will prove, under suitable assumptions, local and global well-posedness (using the uniform sectorial operators theory), the existence and regularity of pullback attractors {A(epsilon)(t) : t is an element of R}, uniform bounds for these pullback attractors, characterization of these pullback attractors and their upper and lower semicontinuity at epsilon = 0. (C) 2010 Elsevier Ltd. All rights reserved. | |
dc.language | eng | |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | |
dc.relation | Nonlinear Analysis-theory Methods & Applications | |
dc.rights | Copyright PERGAMON-ELSEVIER SCIENCE LTD | |
dc.rights | restrictedAccess | |
dc.subject | Non-autonomous damped wave equation | |
dc.subject | Existence and structure of the pullback attractor | |
dc.subject | Lower and upper semicontinuity | |
dc.title | A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor | |
dc.type | Artículos de revistas | |