dc.creatorCARABALLO, Tomas
dc.creatorCARVALHO, Alexandre N.
dc.creatorLANGA, Jose A.
dc.creatorRIVERO, Felipe
dc.date.accessioned2012-10-20T03:32:38Z
dc.date.accessioned2018-07-04T15:38:08Z
dc.date.available2012-10-20T03:32:38Z
dc.date.available2018-07-04T15:38:08Z
dc.date.created2012-10-20T03:32:38Z
dc.date.issued2011
dc.identifierNONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v.74, n.6, p.2272-2283, 2011
dc.identifier0362-546X
dc.identifierhttp://producao.usp.br/handle/BDPI/28806
dc.identifier10.1016/j.na.2010.11.032
dc.identifierhttp://dx.doi.org/10.1016/j.na.2010.11.032
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625448
dc.description.abstractIn this paper we consider the strongly damped wave equation with time-dependent terms u(tt) - Delta u - gamma(t)Delta u(t) + beta(epsilon)(t)u(t) = f(u), in a bounded domain Omega subset of R(n), under some restrictions on beta(epsilon)(t), gamma(t) and growth restrictions on the nonlinear term f. The function beta(epsilon)(t) depends on a parameter epsilon, beta(epsilon)(t) -> 0. We will prove, under suitable assumptions, local and global well-posedness (using the uniform sectorial operators theory), the existence and regularity of pullback attractors {A(epsilon)(t) : t is an element of R}, uniform bounds for these pullback attractors, characterization of these pullback attractors and their upper and lower semicontinuity at epsilon = 0. (C) 2010 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relationNonlinear Analysis-theory Methods & Applications
dc.rightsCopyright PERGAMON-ELSEVIER SCIENCE LTD
dc.rightsrestrictedAccess
dc.subjectNon-autonomous damped wave equation
dc.subjectExistence and structure of the pullback attractor
dc.subjectLower and upper semicontinuity
dc.titleA non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución