dc.creatorCARDOSO, Margarida G. M. S.
dc.creatorCARVALHO, Andre Ponce de Leon F. de
dc.date.accessioned2012-10-20T03:30:59Z
dc.date.accessioned2018-07-04T15:38:01Z
dc.date.available2012-10-20T03:30:59Z
dc.date.available2018-07-04T15:38:01Z
dc.date.created2012-10-20T03:30:59Z
dc.date.issued2009
dc.identifierINTELLIGENT DATA ANALYSIS, v.13, n.5, p.725-740, 2009
dc.identifier1088-467X
dc.identifierhttp://producao.usp.br/handle/BDPI/28785
dc.identifier10.3233/IDA-2009-0390
dc.identifierhttp://dx.doi.org/10.3233/IDA-2009-0390
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625427
dc.description.abstractClustering quality or validation indices allow the evaluation of the quality of clustering in order to support the selection of a specific partition or clustering structure in its natural unsupervised environment, where the real solution is unknown or not available. In this paper, we investigate the use of quality indices mostly based on the concepts of clusters` compactness and separation, for the evaluation of clustering results (partitions in particular). This work intends to offer a general perspective regarding the appropriate use of quality indices for the purpose of clustering evaluation. After presenting some commonly used indices, as well as indices recently proposed in the literature, key issues regarding the practical use of quality indices are addressed. A general methodological approach is presented which considers the identification of appropriate indices thresholds. This general approach is compared with the simple use of quality indices for evaluating a clustering solution.
dc.languageeng
dc.publisherIOS PRESS
dc.relationIntelligent Data Analysis
dc.rightsCopyright IOS PRESS
dc.rightsrestrictedAccess
dc.subjectCluster validation
dc.subjectvalidation indices
dc.subjectquality indices
dc.subjectclustering
dc.titleQuality indices for (practical) clustering evaluation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución