dc.creatorCUERVO, Edilberto Cepeda
dc.creatorACHCAR, Jorge Alberto
dc.date.accessioned2012-10-20T03:30:54Z
dc.date.accessioned2018-07-04T15:37:57Z
dc.date.available2012-10-20T03:30:54Z
dc.date.available2018-07-04T15:37:57Z
dc.date.created2012-10-20T03:30:54Z
dc.date.issued2010
dc.identifierCOMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, NEW YORK, v.39, n.2, p.405-419, 2010
dc.identifier0361-0918
dc.identifierhttp://producao.usp.br/handle/BDPI/28767
dc.identifier10.1080/03610910903480784
dc.identifierhttp://dx.doi.org/10.1080/03610910903480784
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625409
dc.description.abstractIn this article, we present a generalization of the Bayesian methodology introduced by Cepeda and Gamerman (2001) for modeling variance heterogeneity in normal regression models where we have orthogonality between mean and variance parameters to the general case considering both linear and highly nonlinear regression models. Under the Bayesian paradigm, we use MCMC methods to simulate samples for the joint posterior distribution. We illustrate this algorithm considering a simulated data set and also considering a real data set related to school attendance rate for children in Colombia. Finally, we present some extensions of the proposed MCMC algorithm.
dc.languageeng
dc.publisherTAYLOR & FRANCIS INC
dc.publisherNEW YORK
dc.relationCommunications in Statistics-simulation and Computation
dc.rightsCopyright TAYLOR & FRANCIS INC
dc.rightsrestrictedAccess
dc.subjectBayesian analysis
dc.subjectHeteroscedasticity
dc.subjectMCMC algorithm
dc.subjectNonlinear regression
dc.subjectParameter estimation
dc.titleHeteroscedastic Nonlinear Regression Models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución