dc.creatorLORENA, Ana Carolina
dc.creatorCARVALHO, Andre C. P. L. F. de
dc.date.accessioned2012-10-20T03:30:47Z
dc.date.accessioned2018-07-04T15:37:53Z
dc.date.available2012-10-20T03:30:47Z
dc.date.available2018-07-04T15:37:53Z
dc.date.created2012-10-20T03:30:47Z
dc.date.issued2010
dc.identifierNEUROCOMPUTING, v.73, n.16-18, Special Issue, p.2837-2845, 2010
dc.identifier0925-2312
dc.identifierhttp://producao.usp.br/handle/BDPI/28752
dc.identifier10.1016/j.neucom.2010.03.027
dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2010.03.027
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625394
dc.description.abstractVarious popular machine learning techniques, like support vector machines, are originally conceived for the solution of two-class (binary) classification problems. However, a large number of real problems present more than two classes. A common approach to generalize binary learning techniques to solve problems with more than two classes, also known as multiclass classification problems, consists of hierarchically decomposing the multiclass problem into multiple binary sub-problems, whose outputs are combined to define the predicted class. This strategy results in a tree of binary classifiers, where each internal node corresponds to a binary classifier distinguishing two groups of classes and the leaf nodes correspond to the problem classes. This paper investigates how measures of the separability between classes can be employed in the construction of binary-tree-based multiclass classifiers, adapting the decompositions performed to each particular multiclass problem. (C) 2010 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationNeurocomputing
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectSupervised machine learning
dc.subjectMulticlass classification problems
dc.subjectHierarchical decomposition
dc.titleBuilding binary-tree-based multiclass classifiers using separability measures
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución