dc.creatorQUILES, Marcos G.
dc.creatorWANG, DeLiang
dc.creatorZHAO, Liang
dc.creatorROMERO, Roseli A. F.
dc.creatorHUANG, De-Shuang
dc.date.accessioned2012-10-20T03:30:45Z
dc.date.accessioned2018-07-04T15:37:49Z
dc.date.available2012-10-20T03:30:45Z
dc.date.available2018-07-04T15:37:49Z
dc.date.created2012-10-20T03:30:45Z
dc.date.issued2011
dc.identifierNEURAL NETWORKS, v.24, n.1, p.54-64, 2011
dc.identifier0893-6080
dc.identifierhttp://producao.usp.br/handle/BDPI/28745
dc.identifier10.1016/j.neunet.2010.09.002
dc.identifierhttp://dx.doi.org/10.1016/j.neunet.2010.09.002
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625387
dc.description.abstractAttention is a critical mechanism for visual scene analysis. By means of attention, it is possible to break down the analysis of a complex scene to the analysis of its parts through a selection process. Empirical studies demonstrate that attentional selection is conducted on visual objects as a whole. We present a neurocomputational model of object-based selection in the framework of oscillatory correlation. By segmenting an input scene and integrating the segments with their conspicuity obtained from a saliency map, the model selects salient objects rather than salient locations. The proposed system is composed of three modules: a saliency map providing saliency values of image locations, image segmentation for breaking the input scene into a set of objects, and object selection which allows one of the objects of the scene to be selected at a time. This object selection system has been applied to real gray-level and color images and the simulation results show the effectiveness of the system. (C) 2010 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relationNeural Networks
dc.rightsCopyright PERGAMON-ELSEVIER SCIENCE LTD
dc.rightsrestrictedAccess
dc.subjectObject selection
dc.subjectLEGION
dc.subjectOscillatory correlation
dc.subjectVisual attention
dc.titleSelecting salient objects in real scenes: An oscillatory correlation model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución