Artículos de revistas
Disruption of the 2-methylcitric acid cycle and evaluation of poly-3-hydroxybutyrate-co-3-hydroxyvalerate biosynthesis suggest alternate catabolic pathways of propionate in Burkholderia sacchari
Fecha
2009Registro en:
CANADIAN JOURNAL OF MICROBIOLOGY, v.55, n.6, p.688-697, 2009
0008-4166
10.1139/W09-018
Autor
PEREIRA, Erica Mendes
SILVA-QUEIROZ, Sonia Regina
GOMEZ, Jose Gregorio Cabrera
SILVA, Luiziana Ferreira
Institución
Resumen
The objective of the present work was to evaluate the relevance of the 2-methylcitric acid cycle (2MCC) to the catabolism of propionate in Burkholderia sacchari. Two B. sacchari mutants unable to grow on propionate were obtained: one disrupted in acnM, and the other in acnM and prpC deleted. An operative 2MCC significantly reduces the bacterial ability to incorporate 3-hydroxyvalerate (3HV) into a biodegradable copolyester accumulated from carbohydrates plus propionate. The efficiency of the mutants in converting propionate to 3HV units (Y(3HV/prp)) increased from 0.09 g.g(-1) to 0.81-0.96 g.g(-1), indicating that acnM and prpC are both essential for growth on propionate. None of the mutations resulted in achievement of the maximum theoretical Y(3HV/prp) (1.35 g.g(-1)). When increasing concentrations of propionate were supplied, decreasing values of Y(3HV/prp) were observed. The results obtained corroborate the hypothesis of the presence of other propionate catabolic pathways in B. sacchari. The 2MCC would be the more operative pathway, but a second pathway, which remains to be elucidated, would assume more importance under propionate concentrations of 1 g.L(-1) or higher. The efficiency in converting propionate to 3HV units can be improved by decreasing the propionate concentrations, owing to the role of the 2MCC.