Artículos de revistas
Effects of sinoaortic Denervation on Hemodynamic parameters during natural sleep in rats
Fecha
2008Registro en:
SLEEP, v.31, n.3, p.328-333, 2008
0161-8105
Autor
SILVEIRA, Neide P.
MOREIRA, Edson D.
DRAGER, Luciano F.
SILVA, Gustavo J. J.
KRIEGER, Eduardo M.
Institución
Resumen
Study Objectives: To analyze the role of arterial baroreflex on hemodynamic changes during synchronized and desynchronized sleep phases of natural sleep in rats. Design: Experimental study. Setting: Laboratory. Participants: Seventeen male Wistar rats. Interventions: No intervention (control, n = 8) or sinoaortic denervation (SAD, n = 9). Measurements and Results: Sleep phases were monitored by electrocorticogram, and blood pressure was measured directly by a catheter in the carotid artery. Cardiac output, as well as total and regional vascular resistances, were determined by measuring the subdiaphragmatic aorta and iliac artery flows with Doppler flow probes, respectively. In contrast to the control group, the SAD group had a strong reduction in blood pressure (-19.9% +/- 2.6% vs -0.7% +/- 2.1%) during desynchronized sleep, and cardiac output showed an exacerbated reduction (-10.4% +/- 3.5% vs 1.1% +/- 1.7%). In SAD rats, total vascular resistance decreased during desynchronized sleep (-10.1% +/- 3.5% vs -1.0% +/- 1.7%), and the increase in regional vascular resistance observed in the control group was abolished (27.5% +/- 8.3% vs -0.8% +/- 9.4%). Conclusions: SAD caused profound changes in blood pressure, cardiac output, and total vascular resistance, with a significant increase in muscle vascular resistance during synchronized sleep. Our results suggest that baroreflex plays an important role in maintaining the normal balance of cardiac output and total vascular resistance during sleep.