Brasil
| Artículos de revistas
The influence of oscillations on global existence for a class of semi-linear wave equations
dc.creator | EBERT, M. R. | |
dc.creator | REISSIG, Michael | |
dc.date.accessioned | 2012-10-19T14:18:06Z | |
dc.date.accessioned | 2018-07-04T15:02:15Z | |
dc.date.available | 2012-10-19T14:18:06Z | |
dc.date.available | 2018-07-04T15:02:15Z | |
dc.date.created | 2012-10-19T14:18:06Z | |
dc.date.issued | 2011 | |
dc.identifier | MATHEMATICAL METHODS IN THE APPLIED SCIENCES, v.34, n.11, p.1289-1307, 2011 | |
dc.identifier | 0170-4214 | |
dc.identifier | http://producao.usp.br/handle/BDPI/20942 | |
dc.identifier | 10.1002/mma.1430 | |
dc.identifier | http://dx.doi.org/10.1002/mma.1430 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1617721 | |
dc.description.abstract | The goal of this paper is to study the global existence of small data solutions to the Cauchy problem for the nonlinear wave equation u(tt) - a(t)(2) Delta u = u(t)(2) - a(t)(2)vertical bar del u vertical bar(2). In particular we are interested in statements for the 1D case. We will explain how the interplay between the increasing and oscillating behavior of the coefficient will influence global existence of small data solutions. Copyright c 2011 John Wiley & Sons, Ltd. | |
dc.language | eng | |
dc.publisher | WILEY-BLACKWELL | |
dc.relation | Mathematical Methods in the Applied Sciences | |
dc.rights | Copyright WILEY-BLACKWELL | |
dc.rights | restrictedAccess | |
dc.subject | semi-linear wave equations | |
dc.subject | Cauchy problem | |
dc.subject | second-order wave equations | |
dc.subject | global existence | |
dc.subject | small data solutions | |
dc.title | The influence of oscillations on global existence for a class of semi-linear wave equations | |
dc.type | Artículos de revistas |