Brasil | Artículos de revistas
dc.creatorEBERT, M. R.
dc.creatorREISSIG, Michael
dc.date.accessioned2012-10-19T14:18:06Z
dc.date.accessioned2018-07-04T15:02:15Z
dc.date.available2012-10-19T14:18:06Z
dc.date.available2018-07-04T15:02:15Z
dc.date.created2012-10-19T14:18:06Z
dc.date.issued2011
dc.identifierMATHEMATICAL METHODS IN THE APPLIED SCIENCES, v.34, n.11, p.1289-1307, 2011
dc.identifier0170-4214
dc.identifierhttp://producao.usp.br/handle/BDPI/20942
dc.identifier10.1002/mma.1430
dc.identifierhttp://dx.doi.org/10.1002/mma.1430
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1617721
dc.description.abstractThe goal of this paper is to study the global existence of small data solutions to the Cauchy problem for the nonlinear wave equation u(tt) - a(t)(2) Delta u = u(t)(2) - a(t)(2)vertical bar del u vertical bar(2). In particular we are interested in statements for the 1D case. We will explain how the interplay between the increasing and oscillating behavior of the coefficient will influence global existence of small data solutions. Copyright c 2011 John Wiley & Sons, Ltd.
dc.languageeng
dc.publisherWILEY-BLACKWELL
dc.relationMathematical Methods in the Applied Sciences
dc.rightsCopyright WILEY-BLACKWELL
dc.rightsrestrictedAccess
dc.subjectsemi-linear wave equations
dc.subjectCauchy problem
dc.subjectsecond-order wave equations
dc.subjectglobal existence
dc.subjectsmall data solutions
dc.titleThe influence of oscillations on global existence for a class of semi-linear wave equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución