dc.creatorTINOS, Renato
dc.creatorYANG, Shengxiang
dc.date.accessioned2012-10-19T14:18:02Z
dc.date.accessioned2018-07-04T15:02:13Z
dc.date.available2012-10-19T14:18:02Z
dc.date.available2018-07-04T15:02:13Z
dc.date.created2012-10-19T14:18:02Z
dc.date.issued2011
dc.identifierSOFT COMPUTING, v.15, n.8, Special Issue, p.1523-1549, 2011
dc.identifier1432-7643
dc.identifierhttp://producao.usp.br/handle/BDPI/20931
dc.identifier10.1007/s00500-010-0686-8
dc.identifierhttp://dx.doi.org/10.1007/s00500-010-0686-8
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1617710
dc.description.abstractThis paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.
dc.languageeng
dc.publisherSPRINGER
dc.relationSoft Computing
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectEvolutionary algorithms
dc.subjectq-Gaussian distribution
dc.subjectSelf-adaptation
dc.subjectEvolutionary programming
dc.subjectMutation distribution
dc.titleUse of the q-Gaussian mutation in evolutionary algorithms
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución