dc.creator | NICOLA, Selma H. J. | |
dc.creator | PIERRI, Michelle | |
dc.date.accessioned | 2012-10-19T14:13:01Z | |
dc.date.accessioned | 2018-07-04T15:00:20Z | |
dc.date.available | 2012-10-19T14:13:01Z | |
dc.date.available | 2018-07-04T15:00:20Z | |
dc.date.created | 2012-10-19T14:13:01Z | |
dc.date.issued | 2009 | |
dc.identifier | NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, v.10, n.5, p.2937-2938, 2009 | |
dc.identifier | 1468-1218 | |
dc.identifier | http://producao.usp.br/handle/BDPI/20665 | |
dc.identifier | 10.1016/j.nonrwa.2008.09.011 | |
dc.identifier | http://dx.doi.org/10.1016/j.nonrwa.2008.09.011 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1617444 | |
dc.description.abstract | In [Haiyin Gao, Ke Wang, Fengying Wei, Xiaohua Ding, Massera-type theorem and asymptotically periodic Logistic equations, Nonlinear Analysis: Real World Applications 7 (2006) 1268-1283, Lemma 2.1] it is established that a scalar S-asymptotically to-periodic function (that is, a continuous and bounded function f : [0, infinity) -> R such that lim(t ->infinity)(f (t + omega) - f (t)) = 0) is asymptotically omega-periodic. In this note we give two examples to show that this assertion is false. (C) 2008 Elsevier Ltd. Ail rights reserved. | |
dc.language | eng | |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | |
dc.relation | Nonlinear Analysis-real World Applications | |
dc.rights | Copyright PERGAMON-ELSEVIER SCIENCE LTD | |
dc.rights | restrictedAccess | |
dc.subject | Almost periodic function | |
dc.subject | Asymptotically almost periodic function | |
dc.title | A note on S-asymptotically periodic functions | |
dc.type | Artículos de revistas | |