dc.creatorNICOLA, Selma H. J.
dc.creatorPIERRI, Michelle
dc.date.accessioned2012-10-19T14:13:01Z
dc.date.accessioned2018-07-04T15:00:20Z
dc.date.available2012-10-19T14:13:01Z
dc.date.available2018-07-04T15:00:20Z
dc.date.created2012-10-19T14:13:01Z
dc.date.issued2009
dc.identifierNONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, v.10, n.5, p.2937-2938, 2009
dc.identifier1468-1218
dc.identifierhttp://producao.usp.br/handle/BDPI/20665
dc.identifier10.1016/j.nonrwa.2008.09.011
dc.identifierhttp://dx.doi.org/10.1016/j.nonrwa.2008.09.011
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1617444
dc.description.abstractIn [Haiyin Gao, Ke Wang, Fengying Wei, Xiaohua Ding, Massera-type theorem and asymptotically periodic Logistic equations, Nonlinear Analysis: Real World Applications 7 (2006) 1268-1283, Lemma 2.1] it is established that a scalar S-asymptotically to-periodic function (that is, a continuous and bounded function f : [0, infinity) -> R such that lim(t ->infinity)(f (t + omega) - f (t)) = 0) is asymptotically omega-periodic. In this note we give two examples to show that this assertion is false. (C) 2008 Elsevier Ltd. Ail rights reserved.
dc.languageeng
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relationNonlinear Analysis-real World Applications
dc.rightsCopyright PERGAMON-ELSEVIER SCIENCE LTD
dc.rightsrestrictedAccess
dc.subjectAlmost periodic function
dc.subjectAsymptotically almost periodic function
dc.titleA note on S-asymptotically periodic functions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución