dc.creator | HENRIQUEZ, Hernan R. | |
dc.creator | PIERRI, Michelle | |
dc.creator | TABOAS, Placido | |
dc.date.accessioned | 2012-10-19T14:12:25Z | |
dc.date.accessioned | 2018-07-04T14:59:57Z | |
dc.date.available | 2012-10-19T14:12:25Z | |
dc.date.available | 2018-07-04T14:59:57Z | |
dc.date.created | 2012-10-19T14:12:25Z | |
dc.date.issued | 2008 | |
dc.identifier | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.343, n.2, p.1119-1130, 2008 | |
dc.identifier | 0022-247X | |
dc.identifier | http://producao.usp.br/handle/BDPI/20578 | |
dc.identifier | 10.1016/j.jmaa.2008.02.023 | |
dc.identifier | http://dx.doi.org/10.1016/j.jmaa.2008.02.023 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1617360 | |
dc.description.abstract | This paper is devoted to the study of the class of continuous and bounded functions f : [0, infinity] -> X for which exists omega > 0 such that lim(t ->infinity) (f (t + omega) - f (t)) = 0 (in the sequel called S-asymptotically omega-periodic functions). We discuss qualitative properties and establish some relationships between this type of functions and the class of asymptotically omega-periodic functions. We also study the existence of S-asymptotically omega-periodic mild solutions of the first-order abstract Cauchy problem in Banach spaces. (C) 2008 Elsevier Inc. All rights reserved. | |
dc.language | eng | |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.relation | Journal of Mathematical Analysis and Applications | |
dc.rights | Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE | |
dc.rights | restrictedAccess | |
dc.subject | S-asymptotically periodic functions | |
dc.subject | asymptotically periodic functions | |
dc.subject | asymptotically almost periodic functions | |
dc.subject | abstract Cauchy problem | |
dc.subject | semigroups of bounded linear operators | |
dc.title | On S-asymptotically omega-periodic functions on Banach spaces and applications | |
dc.type | Artículos de revistas | |