dc.creatorALBERICI, Luciane C.
dc.creatorVERCESI, Anibal E.
dc.creatorOLIVEIRA, Helena C. F.
dc.date.accessioned2012-10-19T03:40:12Z
dc.date.accessioned2018-07-04T14:57:21Z
dc.date.available2012-10-19T03:40:12Z
dc.date.available2018-07-04T14:57:21Z
dc.date.created2012-10-19T03:40:12Z
dc.date.issued2011
dc.identifierJOURNAL OF BIOENERGETICS AND BIOMEMBRANES, v.43, n.1, p.19-23, 2011
dc.identifier0145-479X
dc.identifierhttp://producao.usp.br/handle/BDPI/19977
dc.identifier10.1007/s10863-011-9326-y
dc.identifierhttp://dx.doi.org/10.1007/s10863-011-9326-y
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1616761
dc.description.abstractIn this work we review recent findings that explain how mitochondrial bioenergetic functions and redox state respond to a hyperlipidemic in vivo environment and may contribute to the maintenance of a normal metabolic phenotype. The experimental model utilized to evidence these adaptive mechanisms is especially useful for these studies since it exhibits genetic hypertriglyceridemia and avoids complications introduced by high fat diets. Liver from hypertrigliceridemic (HTG) mice have a greater content of glycerolipids together with increased mitochondrial free fatty acid oxidation. HTG liver mitochondria have a higher resting respiration rate but normal oxidative phosphorylation efficiency. This is achieved by higher activity of the mitochondrial potassium channel sensitive to ATP (mitoK(ATP)). The mild uncoupling mediated by mitoK(ATP) accelerates respiration rates and reduces reactive oxygen species generation. Although this response is not sufficient to inhibit lipid induced extra-mitochondrial oxidative stress in whole liver cells it avoids amplification of this redox imbalance. Furthermore, higher mitoK(ATP) activity increases liver, brain and whole body metabolic rates. These mitochondrial adaptations may explain why these HTG mice do not develop insulin resistance and obesity even under a severe hyperlipidemic state. On the contrary, when long term high fat diets are employed, insulin resistance, fatty liver and obesity develop and mitochondrial adaptations are inefficient to counteract energy and redox imbalances.
dc.languageeng
dc.publisherSPRINGER/PLENUM PUBLISHERS
dc.relationJournal of Bioenergetics and Biomembranes
dc.rightsCopyright SPRINGER/PLENUM PUBLISHERS
dc.rightsrestrictedAccess
dc.subjecthypertriglyceridemia
dc.subjectmitochondrial uncoupling
dc.subjectredox state
dc.subjectmitochondrial ATP-sensitive potassium channels
dc.titleMitochondrial energy metabolism and redox responses to hypertriglyceridemia
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución