dc.creatorOZAKI, Vitor A.
dc.creatorGHOSH, Sujit K.
dc.creatorGOODWIN, Barry K.
dc.creatorSHIROTA, Ricardo
dc.date.accessioned2012-10-19T02:25:46Z
dc.date.accessioned2018-07-04T14:53:31Z
dc.date.available2012-10-19T02:25:46Z
dc.date.available2018-07-04T14:53:31Z
dc.date.created2012-10-19T02:25:46Z
dc.date.issued2008
dc.identifierAMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, v.90, n.4, p.951-961, 2008
dc.identifier0002-9092
dc.identifierhttp://producao.usp.br/handle/BDPI/19098
dc.identifier10.1111/j.1467-8276.2008.01153.x
dc.identifierhttp://dx.doi.org/10.1111/j.1467-8276.2008.01153.x
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1615889
dc.description.abstractThis article presents a statistical model of agricultural yield data based on a set of hierarchical Bayesian models that allows joint modeling of temporal and spatial autocorrelation. This method captures a comprehensive range of the various uncertainties involved in predicting crop insurance premium rates as opposed to the more traditional ad hoc, two-stage methods that are typically based on independent estimation and prediction. A panel data set of county-average yield data was analyzed for 290 counties in the State of Parana (Brazil) for the period of 1990 through 2002. Posterior predictive criteria are used to evaluate different model specifications. This article provides substantial improvements in the statistical and actuarial methods often applied to the calculation of insurance premium rates. These improvements are especially relevant to situations where data are limited.
dc.languageeng
dc.publisherBLACKWELL PUBLISHING
dc.relationAmerican Journal of Agricultural Economics
dc.rightsCopyright BLACKWELL PUBLISHING
dc.rightsrestrictedAccess
dc.subjectcrop insurance
dc.subjecthierarchical Bayesian models
dc.subjectspatio-temporal models
dc.titleSpatio-temporal modeling of agricultural yield data with an application to pricing crop insurance contracts
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución