dc.creatorVIEIRA, Afranio M. C.
dc.creatorLEANDRO, Roseli A.
dc.creatorDEMETRIO, Clarice G. B.
dc.creatorMOLENBERGHS, Geert
dc.date.accessioned2012-10-19T02:22:12Z
dc.date.accessioned2018-07-04T14:52:56Z
dc.date.available2012-10-19T02:22:12Z
dc.date.available2018-07-04T14:52:56Z
dc.date.created2012-10-19T02:22:12Z
dc.date.issued2011
dc.identifierJOURNAL OF APPLIED STATISTICS, v.38, n.8, p.1717-1731, 2011
dc.identifier0266-4763
dc.identifierhttp://producao.usp.br/handle/BDPI/18959
dc.identifier10.1080/02664763.2010.529875
dc.identifierhttp://dx.doi.org/10.1080/02664763.2010.529875
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1615750
dc.description.abstractJoint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.
dc.languageeng
dc.publisherROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
dc.relationJournal of Applied Statistics
dc.rightsCopyright ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD
dc.rightsrestrictedAccess
dc.subjectBayesian data analysis
dc.subjectgeneralized linear models
dc.subjecttissue culture
dc.subjectMarkov Chain Monte Carlo
dc.subjectbinomial distribution
dc.subjectGibbs sampling
dc.subjectrandom effects
dc.titleDouble generalized linear model for tissue culture proportion data: a Bayesian perspective
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución