Artículos de revistas
Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri, in sweet orange seedlings
Fecha
2010Registro en:
ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, v.134, n.1, p.35-49, 2010
0013-8703
10.1111/j.1570-7458.2009.00937.x
Autor
BONANI, J. P.
FERERES, A.
GARZO, E.
MIRANDA, M. P.
APPEZZATO-DA-GLORIA, B.
LOPES, J. R. S.
Institución
Resumen
Detailed information on probing behavior of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is critical for understanding the transmission process of phloem-limited bacteria (Candidatus Liberibacter spp.) associated with citrus `huanglongbing` by this vector. In this study, we investigated stylet penetration activities of D. citri on seedlings of Citrus sinensis (L.) Osbeck cv. Pera (Rutaceae) by using the electrical penetration graph (EPG-DC system) technique. EPG waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration into plant tissues. The main waveforms were correlated with histological observations of salivary sheath termini in plant tissues, to determine the putative location of stylet tips. The behavioral activities were also inferred based on waveform similarities in relation to other Sternorrhyncha, particularly aphids and whiteflies. In addition, we correlated the occurrence of specific waveforms with the acquisition of the phloem-limited bacterium Ca. Liberibacter asiaticus by D. citri. The occurrence of a G-like xylem sap ingestion waveform in starved and unstarved psyllids was also compared. By analyzing 8-h EPGs of adult females, five waveforms were described: (C) salivary sheath secretion and other stylet pathway activities; (D) first contact with phloem (distinct from other waveforms reported for Sternorrhyncha); (E1) putative salivation in phloem sieve tubes; (E2) phloem sap ingestion; and (G) probably xylem sap ingestion. Diaphorina citri initiates a probe with stylet pathway through epidermis and parenchyma (C). Interestingly, no potential drops were observed during the stylet pathway phase, as are usually recorded in aphids and other Sternorrhyncha. Once in C, D. citri shows a higher propensity to return to non-probing than to start a phloem or xylem phase. Several probes are usually observed before the phloem phase; waveform D is observed upon phloem contact, always immediately followed by E1. After E1, D. citri either returns to pathway activity (C) or starts phloem sap ingestion, which was the longest activity observed.