dc.creatorRAMIREZ, Miguel Arjona
dc.date.accessioned2012-10-19T01:46:27Z
dc.date.accessioned2018-07-04T14:51:42Z
dc.date.available2012-10-19T01:46:27Z
dc.date.available2018-07-04T14:51:42Z
dc.date.created2012-10-19T01:46:27Z
dc.date.issued2008
dc.identifierIEEE SIGNAL PROCESSING LETTERS, v.15, p.99-102, 2008
dc.identifier1070-9908
dc.identifierhttp://producao.usp.br/handle/BDPI/18665
dc.identifier10.1109/LSP.2007.910319
dc.identifierhttp://dx.doi.org/10.1109/LSP.2007.910319
dc.identifierhttp://dx.doi.org/10.1109/LSP.2007.910319
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1615457
dc.description.abstractStarting from the Durbin algorithm in polynomial space with an inner product defined by the signal autocorrelation matrix, an isometric transformation is defined that maps this vector space into another one where the Levinson algorithm is performed. Alternatively, for iterative algorithms such as discrete all-pole (DAP), an efficient implementation of a Gohberg-Semencul (GS) relation is developed for the inversion of the autocorrelation matrix which considers its centrosymmetry. In the solution of the autocorrelation equations, the Levinson algorithm is found to be less complex operationally than the procedures based on GS inversion for up to a minimum of five iterations at various linear prediction (LP) orders.
dc.languageeng
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relationIeee Signal Processing Letters
dc.rightsCopyright IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.rightsrestrictedAccess
dc.subjectAR models
dc.subjectdiscrete all-pole (DAP)
dc.subjectDurbin algorithm
dc.subjectLevinson algorithm
dc.subjectlinear prediction (LP)
dc.subjectLP analysis
dc.titleA Levinson algorithm based on an isometric transformation of Durbin`s
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución