dc.creatorKIM, Hae Yong
dc.date.accessioned2012-10-19T01:46:11Z
dc.date.accessioned2018-07-04T14:51:30Z
dc.date.available2012-10-19T01:46:11Z
dc.date.available2018-07-04T14:51:30Z
dc.date.created2012-10-19T01:46:11Z
dc.date.issued2010
dc.identifierPATTERN RECOGNITION, v.43, n.3, p.859-872, 2010
dc.identifier0031-3203
dc.identifierhttp://producao.usp.br/handle/BDPI/18620
dc.identifier10.1016/j.patcog.2009.08.005
dc.identifierhttp://dx.doi.org/10.1016/j.patcog.2009.08.005
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1615412
dc.description.abstractWe consider brightness/contrast-invariant and rotation-discriminating template matching that searches an image to analyze A for a query image Q We propose to use the complex coefficients of the discrete Fourier transform of the radial projections to compute new rotation-invariant local features. These coefficients can be efficiently obtained via FFT. We classify templates in ""stable"" and ""unstable"" ones and argue that any local feature-based template matching may fail to find unstable templates. We extract several stable sub-templates of Q and find them in A by comparing the features. The matchings of the sub-templates are combined using the Hough transform. As the features of A are computed only once, the algorithm can find quickly many different sub-templates in A, and it is Suitable for finding many query images in A, multi-scale searching and partial occlusion-robust template matching. (C) 2009 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCI LTD
dc.relationPattern Recognition
dc.rightsCopyright ELSEVIER SCI LTD
dc.rightsrestrictedAccess
dc.subjectTemplate-matching
dc.subjectRadial projection
dc.subjectRotation-invariant feature
dc.subjectBrightness/contrast-invariance
dc.subjectScale invariance
dc.subjectPartial occlusion
dc.titleRotation-discriminating template matching based on Fourier coefficients of radial projections with robustness to scaling and partial occlusion
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución