dc.creatorPEREIRA, Geovandro C. C. F.
dc.creatorSIMPLICIO JR., Marcos A.
dc.creatorNAEHRIG, Michael
dc.creatorBarreto, Paulo Sergio Licciardi Messeder
dc.date.accessioned2012-10-19T01:39:18Z
dc.date.accessioned2018-07-04T14:49:28Z
dc.date.available2012-10-19T01:39:18Z
dc.date.available2018-07-04T14:49:28Z
dc.date.created2012-10-19T01:39:18Z
dc.date.issued2011
dc.identifierJOURNAL OF SYSTEMS AND SOFTWARE, v.84, n.8, p.1319-1326, 2011
dc.identifier0164-1212
dc.identifierhttp://producao.usp.br/handle/BDPI/18149
dc.identifier10.1016/j.jss.2011.03.083
dc.identifierhttp://dx.doi.org/10.1016/j.jss.2011.03.083
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1614945
dc.description.abstractFor the last decade, elliptic curve cryptography has gained increasing interest in industry and in the academic community. This is especially due to the high level of security it provides with relatively small keys and to its ability to create very efficient and multifunctional cryptographic schemes by means of bilinear pairings. Pairings require pairing-friendly elliptic curves and among the possible choices, Barreto-Naehrig (BN) curves arguably constitute one of the most versatile families. In this paper, we further expand the potential of the BN curve family. We describe BN curves that are not only computationally very simple to generate, but also specially suitable for efficient implementation on a very broad range of scenarios. We also present implementation results of the optimal ate pairing using such a curve defined over a 254-bit prime field. (C) 2001 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE INC
dc.relationJournal of Systems and Software
dc.rightsCopyright ELSEVIER SCIENCE INC
dc.rightsrestrictedAccess
dc.subjectPairing-based cryptosystems
dc.subjectElliptic curve cryptosystems
dc.subjectPairing-friendly curves
dc.titleA family of implementation-friendly BN elliptic curves
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución