dc.creatorSILVA, Ivan Nunes da
dc.creatorFLAUZINO, Rogerio Andrade
dc.date.accessioned2012-10-19T01:06:12Z
dc.date.accessioned2018-07-04T14:47:49Z
dc.date.available2012-10-19T01:06:12Z
dc.date.available2018-07-04T14:47:49Z
dc.date.created2012-10-19T01:06:12Z
dc.date.issued2008
dc.identifierAPPLIED SOFT COMPUTING, v.8, n.1, p.590-598, 2008
dc.identifier1568-4946
dc.identifierhttp://producao.usp.br/handle/BDPI/17768
dc.identifier10.1016/j.asoc.2007.03.008
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2007.03.008
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1614566
dc.description.abstractThe crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behaviour. In this paper, a system based on artificial neural networks is developed to overcome the problems usually found in the conventional mathematical models. More specifically, the developed system uses an artificial neural network that simulates the behaviour of the crossflow filtration process in a robust way. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the neural approach. Simulation results are presented to justify the validity of the proposed approach. (C) 2007 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationApplied Soft Computing
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectcrossflow filtration
dc.subjectparameter identification
dc.subjectfiltration processes
dc.subjectartificial neural networks
dc.subjectintelligent systems
dc.titleAn approach based on neural networks for estimation and generalization of crossflow filtration processes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución