dc.creatorBRESSAN, G. M.
dc.creatorKOENIGKAN, L. V.
dc.creatorOLIVEIRA, V. A.
dc.creatorCRUVINEL, P. E.
dc.creatorKARAM, D.
dc.date.accessioned2012-10-19T01:06:07Z
dc.date.accessioned2018-07-04T14:47:46Z
dc.date.available2012-10-19T01:06:07Z
dc.date.available2018-07-04T14:47:46Z
dc.date.created2012-10-19T01:06:07Z
dc.date.issued2008
dc.identifierWEED RESEARCH, v.48, n.5, p.470-479, 2008
dc.identifier0043-1737
dc.identifierhttp://producao.usp.br/handle/BDPI/17752
dc.identifier10.1111/j.1365-3180.2008.00647.x
dc.identifierhttp://dx.doi.org/10.1111/j.1365-3180.2008.00647.x
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1614550
dc.description.abstractDespite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.
dc.languageeng
dc.publisherWILEY-BLACKWELL
dc.relationWeed Research
dc.rightsCopyright WILEY-BLACKWELL
dc.rightsrestrictedAccess
dc.subjectfuzzy logic
dc.subjectgeostatistics
dc.subjectweed infestation
dc.subjectweed maps
dc.subjectmap analysis
dc.subjectpatch
dc.subjectpattern
dc.subjectspatial data
dc.titleA classification methodology for the risk of weed infestation using fuzzy logic
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución