dc.creatorMIJOLARO, A. P.
dc.creatorABERTO, L. F. C.
dc.creatorBRETAS, N. G.
dc.date.accessioned2012-10-19T01:06:06Z
dc.date.accessioned2018-07-04T14:47:45Z
dc.date.available2012-10-19T01:06:06Z
dc.date.available2018-07-04T14:47:45Z
dc.date.created2012-10-19T01:06:06Z
dc.date.issued2008
dc.identifierINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, v.18, n.11, p.3461-3471, 2008
dc.identifier0218-1274
dc.identifierhttp://producao.usp.br/handle/BDPI/17750
dc.identifierhttp://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000262599200017&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1614548
dc.description.abstractThe asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.
dc.languageeng
dc.publisherWORLD SCIENTIFIC PUBL CO PTE LTD
dc.relationInternational Journal of Bifurcation and Chaos
dc.rightsCopyright WORLD SCIENTIFIC PUBL CO PTE LTD
dc.rightsrestrictedAccess
dc.subjectSynchronization
dc.subjectnonlinear systems
dc.subjectnonlinear oscillators
dc.titleSYNCHRONIZATION OF A CLASS OF SECOND-ORDER NONLINEAR SYSTEMS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución