dc.creatorSANTOS, A. C.
dc.creatorDELBEM, A. C. B.
dc.creatorLONDON JR., J. B. A.
dc.creatorBRETAS, N. G.
dc.date.accessioned2012-10-19T01:05:54Z
dc.date.accessioned2018-07-04T14:47:34Z
dc.date.available2012-10-19T01:05:54Z
dc.date.available2018-07-04T14:47:34Z
dc.date.created2012-10-19T01:05:54Z
dc.date.issued2010
dc.identifierIEEE TRANSACTIONS ON POWER SYSTEMS, v.25, n.3, p.1254-1265, 2010
dc.identifier0885-8950
dc.identifierhttp://producao.usp.br/handle/BDPI/17717
dc.identifier10.1109/TPWRS.2010.2041475
dc.identifierhttp://dx.doi.org/10.1109/TPWRS.2010.2041475
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1614515
dc.description.abstractThe power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.
dc.languageeng
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relationIeee Transactions on Power Systems
dc.rightsCopyright IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.rightsrestrictedAccess
dc.subjectData structure
dc.subjectevolutionary algorithms
dc.subjectgraph representation
dc.subjectlarge-scale network
dc.subjectnode-depth encoding
dc.subjectsystem reconfiguration
dc.titleNode-Depth Encoding and Multiobjective Evolutionary Algorithm Applied to Large-Scale Distribution System Reconfiguration
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución