dc.creatorBISPO, Jose Ailton Conceicao
dc.creatorBONAFE, Carlos Francisco Sampaio
dc.creatorSOUZA, Volnei Brito de
dc.creatorSILVA, Joao Batista de Almeida e
dc.creatorCARVALHO, Giovani Brandao Mafra de
dc.date.accessioned2012-10-18T23:52:51Z
dc.date.accessioned2018-07-04T14:46:57Z
dc.date.available2012-10-18T23:52:51Z
dc.date.available2018-07-04T14:46:57Z
dc.date.created2012-10-18T23:52:51Z
dc.date.issued2011
dc.identifierJOURNAL OF MATHEMATICAL CHEMISTRY, v.49, n.9, p.1976-1995, 2011
dc.identifier0259-9791
dc.identifierhttp://producao.usp.br/handle/BDPI/17563
dc.identifier10.1007/s10910-011-9869-5
dc.identifierhttp://dx.doi.org/10.1007/s10910-011-9869-5
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1614365
dc.description.abstractThe principal aim of studies of enzyme-mediated reactions has been to provide comparative and quantitative information on enzyme-catalyzed reactions under distinct conditions. The classic Michaelis-Menten model (Biochem Zeit 49:333, 1913) for enzyme kinetic has been widely used to determine important parameters involved in enzyme catalysis, particularly the Michaelis-Menten constant (K (M) ) and the maximum velocity of reaction (V (max) ). Subsequently, a detailed treatment of the mechanisms of enzyme catalysis was undertaken by Briggs-Haldane (Biochem J 19:338, 1925). These authors proposed the steady-state treatment, since its applicability was constrained to this condition. The present work describes an extending solution of the Michaelis-Menten model without the need for such a steady-state restriction. We provide the first analysis of all of the individual reaction constants calculated analytically. Using this approach, it is possible to accurately predict the results under new experimental conditions and to characterize and optimize industrial processes in the fields of chemical and food engineering, pharmaceuticals and biotechnology.
dc.languageeng
dc.publisherSPRINGER
dc.relationJournal of Mathematical Chemistry
dc.rightsCopyright SPRINGER
dc.rightsrestrictedAccess
dc.subjectBriggs-Haldane
dc.subjectCellular growth
dc.subjectEnzyme catalysis
dc.subjectFermentation
dc.subjectMichelis-Menten kinetics
dc.subjectMonod
dc.subjectOptimization
dc.subjectPeroxidase
dc.titleExtending the kinetic solution of the classic Michaelis-Menten model of enzyme action
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución