dc.creator | ORRU, T. | |
dc.creator | ROSA, J. L. G. | |
dc.creator | ANDRADE NETTO, M. L. | |
dc.date.accessioned | 2012-10-18T23:52:26Z | |
dc.date.accessioned | 2018-07-04T14:46:37Z | |
dc.date.available | 2012-10-18T23:52:26Z | |
dc.date.available | 2018-07-04T14:46:37Z | |
dc.date.created | 2012-10-18T23:52:26Z | |
dc.date.issued | 2008 | |
dc.identifier | APPLIED ARTIFICIAL INTELLIGENCE, v.22, n.9, p.896-920, 2008 | |
dc.identifier | 0883-9514 | |
dc.identifier | http://producao.usp.br/handle/BDPI/17486 | |
dc.identifier | 10.1080/08839510802296044 | |
dc.identifier | http://dx.doi.org/10.1080/08839510802296044 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1614288 | |
dc.description.abstract | An implementation of a computational tool to generate new summaries from new source texts is presented, by means of the connectionist approach (artificial neural networks). Among other contributions that this work intends to bring to natural language processing research, the use of a more biologically plausible connectionist architecture and training for automatic summarization is emphasized. The choice relies on the expectation that it may bring an increase in computational efficiency when compared to the sa-called biologically implausible algorithms. | |
dc.language | eng | |
dc.publisher | TAYLOR & FRANCIS INC | |
dc.relation | Applied Artificial Intelligence | |
dc.rights | Copyright TAYLOR & FRANCIS INC | |
dc.rights | restrictedAccess | |
dc.title | SAB(IO): A BIOLOGICALLY PLAUSIBLE CONNECTIONIST APPROACH TO AUTOMATIC TEXT SUMMARIZATION | |
dc.type | Artículos de revistas | |