Artículos de revistas
Support vector machines for detecting age-related changes in running kinematics
Fecha
2011Registro en:
JOURNAL OF BIOMECHANICS, v.44, n.3, p.540-542, 2011
0021-9290
10.1016/j.jbiomech.2010.09.031
Autor
Fukuchi, Reginaldo K.
Eskofier, Bjoern M.
Duarte, Marcos
Ferber, Reed
Institución
Resumen
Age-related changes in running kinematics have been reported in the literature using classical inferential statistics. However, this approach has been hampered by the increased number of biomechanical gait variables reported and subsequently the lack of differences presented in these studies. Data mining techniques have been applied in recent biomedical studies to solve this problem using a more general approach. In the present work, we re-analyzed lower extremity running kinematic data of 17 young and 17 elderly male runners using the Support Vector Machine (SVM) classification approach. In total, 31 kinematic variables were extracted to train the classification algorithm and test the generalized performance. The results revealed different accuracy rates across three different kernel methods adopted in the classifier, with the linear kernel performing the best. A subsequent forward feature selection algorithm demonstrated that with only six features, the linear kernel SVM achieved 100% classification performance rate, showing that these features provided powerful combined information to distinguish age groups. The results of the present work demonstrate potential in applying this approach to improve knowledge about the age-related differences in running gait biomechanics and encourages the use of the SVM in other clinical contexts. (C) 2010 Elsevier Ltd. All rights reserved.