dc.creatorARRIETA, Jose M.
dc.creatorPEREIRA, Marcone C.
dc.date.accessioned2012-10-18T21:20:43Z
dc.date.accessioned2018-07-04T14:45:03Z
dc.date.available2012-10-18T21:20:43Z
dc.date.available2018-07-04T14:45:03Z
dc.date.created2012-10-18T21:20:43Z
dc.date.issued2011
dc.identifierJOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, v.96, n.1, p.29-57, 2011
dc.identifier0021-7824
dc.identifierhttp://producao.usp.br/handle/BDPI/17127
dc.identifier10.1016/j.matpur.2011.02.003
dc.identifierhttp://dx.doi.org/10.1016/j.matpur.2011.02.003
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1613933
dc.description.abstractIn this paper we analyze the behavior of the Laplace operator with Neumann boundary conditions in a thin domain of the type R(epsilon) = {(x(1), x(2)) is an element of R(2) vertical bar x(1) is an element of (0, 1), 0 < x(2) < epsilon G(x(1), x(1)/epsilon)} where the function G(x, y) is periodic in y of period L. Observe that the upper boundary of the thin domain presents a highly oscillatory behavior and, moreover, the height of the thin domain, the amplitude and period of the oscillations are all of the same order, given by the small parameter epsilon. (C) 2011 Elsevier Masson SAS. All rights reserved.
dc.languageeng
dc.publisherGAUTHIER-VILLARS/EDITIONS ELSEVIER
dc.relationJournal de Mathematiques Pures Et Appliquees
dc.rightsCopyright GAUTHIER-VILLARS/EDITIONS ELSEVIER
dc.rightsrestrictedAccess
dc.subjectThin domain
dc.subjectOscillatory boundary
dc.subjectHomogenization
dc.titleHomogenization in a thin domain with an oscillatory boundary
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución