dc.creatorLERASLE, Matthieu
dc.creatorTAKAHASHI, Daniel Y.
dc.date.accessioned2012-04-19T15:46:07Z
dc.date.accessioned2018-07-04T14:43:18Z
dc.date.available2012-04-19T15:46:07Z
dc.date.available2018-07-04T14:43:18Z
dc.date.created2012-04-19T15:46:07Z
dc.date.issued2011
dc.identifierELECTRONIC JOURNAL OF STATISTICS, v.5, p.534-571, 2011
dc.identifier1935-7524
dc.identifierhttp://producao.usp.br/handle/BDPI/16708
dc.identifier10.1214/11-EJS618
dc.identifierhttp://dx.doi.org/10.1214/11-EJS618
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1613529
dc.description.abstractWe consider the problem of interaction neighborhood estimation from the partial observation of a finite number of realizations of a random field. We introduce a model selection rule to choose estimators of conditional probabilities among natural candidates. Our main result is an oracle inequality satisfied by the resulting estimator. We use then this selection rule in a two-step procedure to evaluate the interacting neighborhoods. The selection rule selects a small prior set of possible interacting points and a cutting step remove from this prior set the irrelevant points. We also prove that the Ising models satisfy the assumptions of the main theorems, without restrictions on the temperature, on the structure of the interacting graph or on the range of the interactions. It provides therefore a large class of applications for our results. We give a computationally efficient procedure in these models. We finally show the practical efficiency of our approach in a simulation study.
dc.languageeng
dc.publisherINST MATHEMATICAL STATISTICS
dc.relationElectronic Journal of Statistics
dc.rightsCopyright INST MATHEMATICAL STATISTICS
dc.rightsopenAccess
dc.subjectIsing model
dc.subjectmodel selection
dc.subjectcomputationally efficient algorithm
dc.titleAn oracle approach for interaction neighborhood estimation in random fields
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución