Brasil | Artículos de revistas
dc.creatorPAVA, Jaime Angulo
dc.creatorNATALI, Fabio M. A.
dc.date.accessioned2012-04-19T15:45:56Z
dc.date.accessioned2018-07-04T14:43:15Z
dc.date.available2012-04-19T15:45:56Z
dc.date.available2018-07-04T14:43:15Z
dc.date.created2012-04-19T15:45:56Z
dc.date.issued2008
dc.identifierSIAM JOURNAL ON MATHEMATICAL ANALYSIS, v.40, n.3, p.1123-1151, 2008
dc.identifier0036-1410
dc.identifierhttp://producao.usp.br/handle/BDPI/16695
dc.identifier10.1137/080718450
dc.identifierhttp://dx.doi.org/10.1137/080718450
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1613516
dc.description.abstractIn this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.
dc.languageeng
dc.publisherSIAM PUBLICATIONS
dc.relationSiam Journal on Mathematical Analysis
dc.rightsCopyright SIAM PUBLICATIONS
dc.rightsopenAccess
dc.subjectdispersive equations
dc.subjectKorteweg-de Vries-type equations
dc.subjectperiodic travelling waves
dc.subjectJacobi elliptic functions
dc.subjectnonlinear stability
dc.titlePOSITIVITY PROPERTIES OF THE FOURIER TRANSFORM AND THE STABILITY OF PERIODIC TRAVELLING-WAVE SOLUTIONS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución