dc.creatorANGULO, Jaime
dc.creatorMATHEUS, Carlos
dc.creatorPILOD, Didier
dc.date.accessioned2012-04-19T15:45:55Z
dc.date.accessioned2018-07-04T14:43:14Z
dc.date.available2012-04-19T15:45:55Z
dc.date.available2018-07-04T14:43:14Z
dc.date.created2012-04-19T15:45:55Z
dc.date.issued2009
dc.identifierCOMMUNICATIONS ON PURE AND APPLIED ANALYSIS, v.8, n.3, p.815-844, 2009
dc.identifier1534-0392
dc.identifierhttp://producao.usp.br/handle/BDPI/16692
dc.identifier10.3934/cpaa.2009.8.815
dc.identifierhttp://dx.doi.org/10.3934/cpaa.2009.8.815
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1613513
dc.description.abstractThe objective of this paper is two-fold: firstly, we develop a local and global (in time) well-posedness theory for a system describing the motion of two fluids with different densities under capillary-gravity waves in a deep water flow (namely, a Schrodinger-Benjamin-Ono system) for low-regularity initial data in both periodic and continuous cases; secondly, a family of new periodic traveling waves for the Schrodinger-Benjamin-Ono system is given: by fixing a minimal period we obtain, via the implicit function theorem, a smooth branch of periodic solutions bifurcating a Jacobian elliptic function called dnoidal, and, moreover, we prove that all these periodic traveling waves are nonlinearly stable by perturbations with the same wavelength.
dc.languageeng
dc.publisherAMER INST MATHEMATICAL SCIENCES
dc.relationCommunications on Pure and Applied Analysis
dc.rightsCopyright AMER INST MATHEMATICAL SCIENCES
dc.rightsopenAccess
dc.subjectNonlinear PDE
dc.subjectinitial value problem
dc.subjecttraveling wave solutions
dc.titleGLOBAL WELL-POSEDNESS AND NON-LINEAR STABILITY OF PERIODIC TRAVELING WAVES FOR A SCHRODINGER-BENJAMIN-ONO SYSTEM
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución