dc.creator | ANGULO, Jaime | |
dc.creator | MATHEUS, Carlos | |
dc.creator | PILOD, Didier | |
dc.date.accessioned | 2012-04-19T15:45:55Z | |
dc.date.accessioned | 2018-07-04T14:43:14Z | |
dc.date.available | 2012-04-19T15:45:55Z | |
dc.date.available | 2018-07-04T14:43:14Z | |
dc.date.created | 2012-04-19T15:45:55Z | |
dc.date.issued | 2009 | |
dc.identifier | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, v.8, n.3, p.815-844, 2009 | |
dc.identifier | 1534-0392 | |
dc.identifier | http://producao.usp.br/handle/BDPI/16692 | |
dc.identifier | 10.3934/cpaa.2009.8.815 | |
dc.identifier | http://dx.doi.org/10.3934/cpaa.2009.8.815 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1613513 | |
dc.description.abstract | The objective of this paper is two-fold: firstly, we develop a local and global (in time) well-posedness theory for a system describing the motion of two fluids with different densities under capillary-gravity waves in a deep water flow (namely, a Schrodinger-Benjamin-Ono system) for low-regularity initial data in both periodic and continuous cases; secondly, a family of new periodic traveling waves for the Schrodinger-Benjamin-Ono system is given: by fixing a minimal period we obtain, via the implicit function theorem, a smooth branch of periodic solutions bifurcating a Jacobian elliptic function called dnoidal, and, moreover, we prove that all these periodic traveling waves are nonlinearly stable by perturbations with the same wavelength. | |
dc.language | eng | |
dc.publisher | AMER INST MATHEMATICAL SCIENCES | |
dc.relation | Communications on Pure and Applied Analysis | |
dc.rights | Copyright AMER INST MATHEMATICAL SCIENCES | |
dc.rights | openAccess | |
dc.subject | Nonlinear PDE | |
dc.subject | initial value problem | |
dc.subject | traveling wave solutions | |
dc.title | GLOBAL WELL-POSEDNESS AND NON-LINEAR STABILITY OF PERIODIC TRAVELING WAVES FOR A SCHRODINGER-BENJAMIN-ONO SYSTEM | |
dc.type | Artículos de revistas | |