dc.creatorADDAS-ZANATA, Salvador
dc.creatorTAL, Fabio Armando
dc.date.accessioned2012-04-19T15:45:01Z
dc.date.accessioned2018-07-04T14:43:13Z
dc.date.available2012-04-19T15:45:01Z
dc.date.available2018-07-04T14:43:13Z
dc.date.created2012-04-19T15:45:01Z
dc.date.issued2010
dc.identifierPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, v.138, n.3, p.1023-1031, 2010
dc.identifier0002-9939
dc.identifierhttp://producao.usp.br/handle/BDPI/16684
dc.identifierhttp://www.ams.org/journals/proc/2010-138-03/S0002-9939-09-10135-1/S0002-9939-09-10135-1.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1613505
dc.description.abstractLet f be a C(r)-diffeomorphism of the closed annulus A that preserves the orientation, the boundary components and the Lebesgue measure. Suppose that f has a lift (f) over tilde to the infinite strip (A) over tilde which has zero Lebesgue measure rotation number. If the rotation number of f restricted to both boundary components of (f) over tilde is positive, then for such a generic f (r >= 16), zero is an interior point of its rotation set. This is a partial solution to a conjecture of P. Boyland.
dc.languageeng
dc.publisherAMER MATHEMATICAL SOC
dc.relationProceedings of the American Mathematical Society
dc.rightsCopyright AMER MATHEMATICAL SOC
dc.rightsopenAccess
dc.subjectClosed connected sets
dc.subjectomega limits
dc.subjectprime end theory
dc.subjectKupka-Smale diffeomorphisms
dc.subjectMoser generic elliptic points
dc.titleON GENERIC ROTATIONLESS DIFFEOMORPHISMS OF THE ANNULUS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución