dc.creatorAbadi, Miguel
dc.creatorSaussol, Benoit
dc.date.accessioned2012-04-19T15:44:51Z
dc.date.accessioned2018-07-04T14:43:11Z
dc.date.available2012-04-19T15:44:51Z
dc.date.available2018-07-04T14:43:11Z
dc.date.created2012-04-19T15:44:51Z
dc.date.issued2011
dc.identifierSTOCHASTIC PROCESSES AND THEIR APPLICATIONS, v.121, n.2, p.314-323, 2011
dc.identifier0304-4149
dc.identifierhttp://producao.usp.br/handle/BDPI/16678
dc.identifier10.1016/j.spa.2010.11.001
dc.identifierhttp://dx.doi.org/10.1016/j.spa.2010.11.001
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1613499
dc.description.abstractWe prove that for any a-mixing stationary process the hitting time of any n-string A(n) converges, when suitably normalized, to an exponential law. We identify the normalization constant lambda(A(n)). A similar statement holds also for the return time. To establish this result we prove two other results of independent interest. First, we show a relation between the rescaled hitting time and the rescaled return time, generalizing a theorem of Haydn, Lacroix and Vaienti. Second, we show that for positive entropy systems, the probability of observing any n-string in n consecutive observations goes to zero as n goes to infinity. (c) 2010 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationStochastic Processes and their Applications
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsclosedAccess
dc.subjectMixing processes
dc.subjectHitting times
dc.subjectRepetition times
dc.subjectReturn times
dc.subjectRare event
dc.subjectExponential approximation
dc.titleHitting and returning to rare events for all alpha-mixing processes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución