dc.creatorMENDONCA, J. Ricardo G.
dc.date.accessioned2012-04-19T00:12:33Z
dc.date.accessioned2018-07-04T14:41:56Z
dc.date.available2012-04-19T00:12:33Z
dc.date.available2018-07-04T14:41:56Z
dc.date.created2012-04-19T00:12:33Z
dc.date.issued2011
dc.identifierPHYSICAL REVIEW E, v.83, n.3, 2011
dc.identifier1539-3755
dc.identifierhttp://producao.usp.br/handle/BDPI/16396
dc.identifier10.1103/PhysRevE.83.031112
dc.identifierhttp://dx.doi.org/10.1103/PhysRevE.83.031112
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1613218
dc.description.abstractWe investigate the sensitivity of the composite cellular automaton of H. Fuks [Phys. Rev. E 55, R2081 (1997)] to noise and assess the density classification performance of the resulting probabilistic cellular automaton (PCA) numerically. We conclude that the composite PCA performs the density classification task reliably only up to very small levels of noise. In particular, it cannot outperform the noisy Gacs-Kurdyumov-Levin automaton, an imperfect classifier, for any level of noise. While the original composite CA is nonergodic, analyses of relaxation times indicate that its noisy version is an ergodic automaton, with the relaxation times decaying algebraically over an extended range of parameters with an exponent very close (possibly equal) to the mean-field value.
dc.languageeng
dc.publisherAMER PHYSICAL SOC
dc.relationPhysical Review E
dc.rightsCopyright AMER PHYSICAL SOC
dc.rightsrestrictedAccess
dc.titleSensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución