dc.creator | FENILLE, Marcio Colombo | |
dc.creator | MANZOLI NETO, Oziride | |
dc.date.accessioned | 2012-04-18T23:47:59Z | |
dc.date.accessioned | 2018-07-04T14:38:12Z | |
dc.date.available | 2012-04-18T23:47:59Z | |
dc.date.available | 2018-07-04T14:38:12Z | |
dc.date.created | 2012-04-18T23:47:59Z | |
dc.date.issued | 2009 | |
dc.identifier | FIXED POINT THEORY AND APPLICATIONS, NEW YORK, JUN 16, 2009 | |
dc.identifier | 1687-1820 | |
dc.identifier | http://producao.usp.br/handle/BDPI/15929 | |
dc.identifier | 10.1155/2009/346519 | |
dc.identifier | http://dx.doi.org/10.1155/2009/346519 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1612751 | |
dc.description.abstract | Given a continuous map f : K -> M from a 2-dimensional CW complex into a closed surface, the Nielsen root number N(f) and the minimal number of roots mu(f) of f satisfy N(f) <= mu(f). But, there is a number mu(C)(f) associated to each Nielsen root class of f, and an important problem is to know when mu(f) = mu(C)(f)N(f). In addition to investigate this problem, we determine a relationship between mu(f) and mu((f) over tilde), when (f) over tilde f is a lifting of f through a covering space, and we find a connection between this problems, with which we answer several questions related to them when the range of the maps is the projective plane. | |
dc.language | eng | |
dc.publisher | HINDAWI PUBLISHING CORPORATION | |
dc.publisher | NEW YORK | |
dc.relation | Fixed Point Theory and Applications | |
dc.rights | Copyright HINDAWI PUBLISHING CORPORATION | |
dc.rights | openAccess | |
dc.title | Minimal Nielsen Root Classes and Roots of Liftings | |
dc.type | Artículos de revistas | |