dc.creatorCARVALHO, A. N.
dc.creatorCHOLEWA, J. W.
dc.date.accessioned2012-04-18T23:47:58Z
dc.date.accessioned2018-07-04T14:38:11Z
dc.date.available2012-04-18T23:47:58Z
dc.date.available2018-07-04T14:38:11Z
dc.date.created2012-04-18T23:47:58Z
dc.date.issued2009
dc.identifierTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, v.361, n.5, p.2567-2586, 2009
dc.identifier0002-9947
dc.identifierhttp://producao.usp.br/handle/BDPI/15926
dc.identifierhttp://www.ams.org/journals/tran/2009-361-05/S0002-9947-08-04789-2/S0002-9947-08-04789-2.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1612748
dc.description.abstractA class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
dc.languageeng
dc.publisherAMER MATHEMATICAL SOC
dc.relationTransactions of the American Mathematical Society
dc.rightsCopyright AMER MATHEMATICAL SOC
dc.rightsopenAccess
dc.subjectEvolution equations of the second order in time
dc.subjectexistence
dc.subjectuniqueness and continuous dependence of solutions on initial conditions
dc.subjectasymptotic behavior of solutions
dc.subjectattractors
dc.subjectregularity
dc.subjectcritical exponents
dc.titleLOCAL WELL POSEDNESS, ASYMPTOTIC BEHAVIOR AND ASYMPTOTIC BOOTSTRAPPING FOR A CLASS OF SEMILINEAR EVOLUTION EQUATIONS OF THE SECOND ORDER IN TIME
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución