Brasil | Artículos de revistas
dc.creatorRABELO, Marcos
dc.creatorALBERTO, L. F. C.
dc.date.accessioned2012-04-17T21:59:32Z
dc.date.accessioned2018-07-04T14:32:46Z
dc.date.available2012-04-17T21:59:32Z
dc.date.available2018-07-04T14:32:46Z
dc.date.created2012-04-17T21:59:32Z
dc.date.issued2010
dc.identifierADVANCES IN DIFFERENCE EQUATIONS, 2010
dc.identifier1687-1839
dc.identifierhttp://producao.usp.br/handle/BDPI/14664
dc.identifier10.1155/2010/496936
dc.identifierhttp://dx.doi.org/10.1155/2010/496936
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1611513
dc.description.abstractAn extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.
dc.languageeng
dc.publisherHINDAWI PUBLISHING CORPORATION
dc.relationAdvances in Difference Equations
dc.rightsCopyright HINDAWI PUBLISHING CORPORATION
dc.rightsopenAccess
dc.titleAn Extension of the Invariance Principle for a Class of Differential Equations with Finite Delay
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución