dc.creatorLIBRALON, Giampaolo Luiz
dc.creatorCARVALHO, André Carlos Ponce de Leon Ferreira de
dc.creatorLORENA, Ana Carolina
dc.date.accessioned2012-03-26T21:34:03Z
dc.date.accessioned2018-07-04T14:24:18Z
dc.date.available2012-03-26T21:34:03Z
dc.date.available2018-07-04T14:24:18Z
dc.date.created2012-03-26T21:34:03Z
dc.date.issued2009
dc.identifierJournal of the Brazilian Computer Society, v.15, n.1, p.3-11, 2009
dc.identifier0104-6500
dc.identifierhttp://producao.usp.br/handle/BDPI/11824
dc.identifier10.1590/S0104-65002009000100002
dc.identifierhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002009000100002
dc.identifierhttp://www.scielo.br/pdf/jbcos/v15n1/v15n1a02.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1609614
dc.description.abstractDue to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.
dc.languageeng
dc.publisherSociedade Brasileira de Computação
dc.relationJournal of the Brazilian Computer Society
dc.rightsCopyright Sociedade Brasileira de Computação
dc.rightsopenAccess
dc.subjectNoise detection
dc.subjectMachine learning
dc.subjectDistance-based techniques
dc.subjectGene expression analysis
dc.titlePre-processing for noise detection in gene expression classification data
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución