dc.contributorMOURA, Márcio José das Chagas
dc.contributorhttp://lattes.cnpq.br/4939317317643877
dc.contributorhttp://lattes.cnpq.br/7778828466828647
dc.creatorSILVA, Sharlene Neuma Henrique da
dc.date2017-04-19T18:10:57Z
dc.date2017-04-19T18:10:57Z
dc.date2016-08-23
dc.identifierhttps://repositorio.ufpe.br/handle/123456789/18597
dc.descriptionEste trabalho trata de sistemas reparáveis que sofrem reparo imperfeito, utilizando uma classe de modelos de processos estocásticos conhecida como Processo de Renovação Generalizado (PRG), que é um modelo de idade virtual que determina a classificação do reparo de acordo com o grau de redução que este proporciona sob a idade real do equipamento, mensurada através de um parâmetro de rejuvenescimento, , e este modelo permite inserir uma maior flexibilidade quanto ao tratamento de dados de falhas. Foi proposto um modelo PRG com base na distribuição -Exponencial ( -PRG), onde o sucesso da Exponencial deve-se, em parte, à sua capacidade de exposições a caudas pesadas e fenômenos de lei de potência. Os estimadores de máxima verossimilhança não apresentaram expressões analíticas e, então, a estimação dos parâmetros -PRG foi realizada por meio do algoritmo evolucionário Differential Evolution (DE), que é algoritmo estocástico para resolver problemas de otimização global de funções não lineares, ou seja, é um método para minimizar funções não lineares e não diferenciáveis em um espaço contínuo de busca. Com base no método DE, foram realizadas simulações a partir de dados de falha extraídos da literatura. A partir das simulações executadas utilizando o método bootstrap paramétrico, mesmo existindo valores discrepantes, o processo de simulação manteve as características dos dados iniciais, de modo que informações sobre as falhas não foram perdidas. Com as simulações, concluiu-se que para tamanhos amostrais maiores, as abordagens bootstrap utilizadas tendem a fornecer estimativas intervalares semelhantes para os parâmetros -PRG. Além disso, foi possível obter alguns resultados estatísticos para os estimadores como a ausência de normalidade e estimar o parâmetro de rejuvenescimento do PRG.
dc.descriptionCAPES
dc.descriptionThis work deals with repairable systems that undergo imperfect repair, using a class of stochastic process models known as Generalized Renewal Process (GRP), which is a virtual age model that determines the classification of the repair according to the degree of reduction that This provides, under the real age of the equipment, measured through a rejuvenation parameter, , and this model allows to insert a greater flexibility in the treatment of data of failures. A GRP model was proposed based on the -Exponential distribution ( -GRP), where -Exponential success is due, in part, to its ability to expose heavy tails and power law phenomena. The maximum likelihood estimators did not present analytical expressions and, therefore, the estimation of the -GRP parameters was performed using the evolutionary algorithm Differential Evolution (DE), which is a stochastic algorithm to solve problems of global optimization of non-linear functions, that is, is a method to minimize non-linear and non-differentiable functions in a continuous search space. Based on the DE method, simulations were performed based on fault data extracted from the literature. From the simulations performed using the parametric bootstrap method, even if there were discrepant values, the simulation process maintained the characteristics of the initial data, so that information about the failures was not lost. With the simulations, it was concluded that for larger sample sizes, the bootstrap approaches used tend to provide similar interval estimates for the -GRP parameters. In addition, it was possible to obtain some statistical results for the estimators such as the absence of normality and to estimate the GRP rejuvenation parameter.
dc.formatapplication/pdf
dc.languagepor
dc.publisherUniversidade Federal de Pernambuco
dc.publisherUFPE
dc.publisherBrasil
dc.publisherPrograma de Pos Graduacao em Engenharia de Producao
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.subjectSistemas reparáveis. Processo de renovação generalizado. Distribuição Exponencial. Differential Evolution.
dc.subjectRepairable systems. Generalized renewal process. Distribution -Exponential. Differential Evolution.
dc.titleProcesso de renovação generalizado para análise de sistemas reparáveis baseado na distribuição q–Exponencial
dc.typemasterThesis


Este ítem pertenece a la siguiente institución