dc.contributor | MOURA, Márcio José das Chagas | |
dc.contributor | http://lattes.cnpq.br/4939317317643877 | |
dc.contributor | http://lattes.cnpq.br/7778828466828647 | |
dc.creator | SILVA, Sharlene Neuma Henrique da | |
dc.date | 2017-04-19T18:10:57Z | |
dc.date | 2017-04-19T18:10:57Z | |
dc.date | 2016-08-23 | |
dc.identifier | https://repositorio.ufpe.br/handle/123456789/18597 | |
dc.description | Este trabalho trata de sistemas reparáveis que sofrem reparo imperfeito, utilizando
uma classe de modelos de processos estocásticos conhecida como Processo de Renovação
Generalizado (PRG), que é um modelo de idade virtual que determina a classificação do
reparo de acordo com o grau de redução que este proporciona sob a idade real do
equipamento, mensurada através de um parâmetro de rejuvenescimento, , e este modelo
permite inserir uma maior flexibilidade quanto ao tratamento de dados de falhas. Foi proposto
um modelo PRG com base na distribuição -Exponencial ( -PRG), onde o sucesso da Exponencial
deve-se, em parte, à sua capacidade de exposições a caudas pesadas e fenômenos
de lei de potência. Os estimadores de máxima verossimilhança não apresentaram expressões
analíticas e, então, a estimação dos parâmetros -PRG foi realizada por meio do algoritmo
evolucionário Differential Evolution (DE), que é algoritmo estocástico para resolver
problemas de otimização global de funções não lineares, ou seja, é um método para minimizar
funções não lineares e não diferenciáveis em um espaço contínuo de busca. Com base no
método DE, foram realizadas simulações a partir de dados de falha extraídos da literatura. A
partir das simulações executadas utilizando o método bootstrap paramétrico, mesmo existindo
valores discrepantes, o processo de simulação manteve as características dos dados iniciais, de
modo que informações sobre as falhas não foram perdidas. Com as simulações, concluiu-se
que para tamanhos amostrais maiores, as abordagens bootstrap utilizadas tendem a fornecer
estimativas intervalares semelhantes para os parâmetros -PRG. Além disso, foi possível
obter alguns resultados estatísticos para os estimadores como a ausência de normalidade e
estimar o parâmetro de rejuvenescimento do PRG. | |
dc.description | CAPES | |
dc.description | This work deals with repairable systems that undergo imperfect repair, using a class of
stochastic process models known as Generalized Renewal Process (GRP), which is a virtual
age model that determines the classification of the repair according to the degree of reduction
that This provides, under the real age of the equipment, measured through a rejuvenation
parameter, , and this model allows to insert a greater flexibility in the treatment of data of
failures. A GRP model was proposed based on the -Exponential distribution ( -GRP), where
-Exponential success is due, in part, to its ability to expose heavy tails and power law
phenomena. The maximum likelihood estimators did not present analytical expressions and,
therefore, the estimation of the -GRP parameters was performed using the evolutionary
algorithm Differential Evolution (DE), which is a stochastic algorithm to solve problems of
global optimization of non-linear functions, that is, is a method to minimize non-linear and
non-differentiable functions in a continuous search space. Based on the DE method,
simulations were performed based on fault data extracted from the literature. From the
simulations performed using the parametric bootstrap method, even if there were discrepant
values, the simulation process maintained the characteristics of the initial data, so that
information about the failures was not lost. With the simulations, it was concluded that for
larger sample sizes, the bootstrap approaches used tend to provide similar interval estimates
for the -GRP parameters. In addition, it was possible to obtain some statistical results for the
estimators such as the absence of normality and to estimate the GRP rejuvenation parameter. | |
dc.format | application/pdf | |
dc.language | por | |
dc.publisher | Universidade Federal de Pernambuco | |
dc.publisher | UFPE | |
dc.publisher | Brasil | |
dc.publisher | Programa de Pos Graduacao em Engenharia de Producao | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Brazil | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/br/ | |
dc.subject | Sistemas reparáveis. Processo de renovação generalizado. Distribuição Exponencial. Differential Evolution. | |
dc.subject | Repairable systems. Generalized renewal process. Distribution -Exponential. Differential Evolution. | |
dc.title | Processo de renovação generalizado para análise de sistemas reparáveis baseado na distribuição q–Exponencial | |
dc.type | masterThesis | |