dc.contributorSILVA, Mauro Copelli Lopes da
dc.contributorhttp://lattes.cnpq.br/8914780970569546
dc.contributorhttp://lattes.cnpq.br/9400915429521069
dc.creatorDORNELLES, Leonardo Dalla Porta
dc.date2017-03-09T12:11:00Z
dc.date2017-03-09T12:11:00Z
dc.date2016-08-26
dc.date.accessioned2018-04-27T12:44:33Z
dc.date.available2018-04-27T12:44:33Z
dc.identifierhttp://repositorio.ufpe.br/handle/123456789/18391
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1416703
dc.descriptionAvalanches neuronais, assim como oscilações e sincronização, são padrõesde atividade espontânea observados em redes neuronais. O conceito de avalanches neuronais foi concebido na última década.EssepadrãodeatividadetemdistribuiçõesdetamanhosP(s)eduraçõesP(d)invariantes por escala, i.e., obedecem relações do tipo lei de potênciaP(s)∼s−τ, com expoenteτ≃3/2, e P(d)∼d−τt, com expoenteτt ≃2, respectivamente. Essas propriedades são compatíveis com a ideia de que o cérebro opera em um regime crítico. A partir dessas constatações, muitos estudos teóricos e experimentais reportaram os potenciais benefícios de um cérebro operando na criticalidade, como por exemplo a máxima sensibilidade aos estímulos sensoriais, máxima capacidade de informação e transmissão e uma ótima capacidade computacional. Modelos da classe de universalidade de percolação direcionada (DP) têm sido amplamente utilizados para explicar a estatística invariante por escala das avalanches neuronais. Porém estes modelos não levam em consideração a dinâmica dos neurônios inibitórios e, além disso, como apresentam uma transição de fase entre um estado absorvente e uma fase ativa, torna-se difícil conciliar o modelo com correlações temporais de longo alcance que são observadas experimentalmente em diferentes escalas espaciais. Neste contexto, um novo modelo computacional (CROs, do original em inglês Critical Oscillations) surgiu na literatura (Poil et al., J. Neurosci.,32 9817, 2012), incluindo neurônios inibitórios e buscando conciliar correlações temporais com avalanches neuronais. Neste modelo não há uma fase absorvente, e uma suposta transição de fases ocorre entre uma fase ativa e outra com oscilações coletivas. Devido à ausência de uma fase absorvente, avalanchesneuronaissãodefinidascomparando-seaatividadeinstantâneadaredecomumlimiar que depende da mediana da atividade total. Justamente na linha crítica do espaço de parâmetros, quandoháumabalançoentreexcitaçãoeinibiçãoneuronal,avalanchesneuronaisinvariantespor escala são observadas juntamente com correlações temporais de longo alcance (ruído 1/f). No presente trabalho, um estudo mais profundo a respeito dos resultados reportados para o modelo CROs foi realizado. As oscilações neuronais mostraram-se robustas para diferentes tamanhos de rede, e observamos que a dinâmica local reflete a dinâmica oscilatória global da rede. Correlações temporais de longo alcance foram observadas (num intervalo de escalas temporais) através da técnica deDetrendedFluctuationAnalysis, sendo robustas perante modificações no tamanho da rede. O resultado foi confirmado pela análise direta do espectro, que apresentou decaimento do tipo 1/f numa determinada faixa de frequências. O diagrama de fases do modelo mostrou-se robusto em relação ao tamanho da rede, mantendo-se o alcance das interações locais. Entretanto,osresultadosmostraram-sefortementedependentesdolimiarutilizadoparadetecção dasavalanchesneuronais.Porfim,mostramosquedistribuiçõesdeduraçõesdeavalanchessãodo tipo lei de potência, com expoenteτt ≃2. Este resultado é inédito e o valor encontrado coincide com o expoente crítico da classe de universalidade de DP na dimensão crítica superior. Em conjunto, nossos resultados fornecem mais evidências de que o modelo CROs de fato apresenta uma transição de fases.
dc.descriptionFACEPE
dc.descriptionNeuronal avalanches, as well as waves and synchronization, are types of spontaneous activity experimentally observed in neuronal networks. The concept of neuronal avalanches was conceivedinthepastdecade.ThispatternofactivityhasdistributionsofsizeP(s)anddurationP(d) which are scale invariant, i.e., follow power-law relationsP(s)∼s−τ, with exponentτ≃3/2, and P(d)∼ d−τd, with exponentτt ≃ 2, respectively. These properties are compatible with the idea that the brain operates in a critical regime. From these findings, many theoretical and experimental studies have reported the potential benefits of a brain operating at criticality, such as maximum sensitivity to sensory stimuli, maximum information capacity and transmission and an optimal computational capabilities. Models belonging to the directed percolation universality class (DP) have been widely used to explain the scale invariant statistic of neuronal avalanches. However,these modelsdo not take into account the dynamics ofinhibitory neuronsand, since as they present a phase transition between an absorbing state and an active phase, it is difficult to reconcile the model with long-range temporal correlations that are observed experimentally at different spatial scales. In this context, a new computational model (CROs, Critical Oscillations) appeared in the literature (Poil et al., J. Neurosci.,32 9817, 2012), including inhibitory neurons and seeking to reconcile temporal correlations with neuronal avalanches. In this model there is no absorbing phase, and a supposed phase transition occurs between an active phase and another with collective oscillations. Due to the lack of an absorbing phase, neuronal avalanches are defined comparing by the instant network activity with a threshold that depends of the total activity median. Precisely at the critical line in parameter space, when a balance between neuronal excitation and inhibition occurs, scale invariant neuronal avalanches are observed with long-range temporal correlations (1/f-like noise). In the present work, a deeper study about the resultsreportedfortheCROsmodelwasperformed.Neuronaloscillationshavebeenshowntobe robust to increasing network sizes, and it was observed that local dynamic reflects the oscillatory global dynamic of the network. Long-range temporal correlations were observed (in a range of time scales) via Detrended Fluctuation Analysis, being robust against changes in network size. The result was confirmed by direct analysis of the spectrum, which showed a decay like 1/f in a given frequency band. The phase diagram of the model was robust with respect to the network size, as long as the range of local interactions was kept. However, the results were dependent of the thresholdused to detect neuronal avalanches.Finally,we have shown thatthe distributions of avalanches duration follows a power-law with exponentτt ≃2. This result is unprecedented and the value obtainedcoincides with the criticalexponent of the DP universality class in the upper criticaldimension.Together,ourresultsprovidefurtherevidencethatinfacttheCROsmodel presents aphasetransition.
dc.languagebr
dc.publisherUniversidade Federal de Pernambuco
dc.publisherUFPE
dc.publisherBrasil
dc.publisherPrograma de Pos Graduacao em Fisica
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.subjectNeurociência
dc.subjectMecânica Estatística
dc.subjectAvalanches Neuronais.
dc.subjectOscilações Neuronais
dc.subjectTransição de Fases
dc.subjectPercolação Direcionada
dc.subjectCriticalidade
dc.subjectCorrelações Temporais de Longo Alcance
dc.subjectNeuroscience
dc.subjectStatistical Mechanics
dc.subjectNeuronal Avalanches
dc.subjectNeuronal Oscillations
dc.subjectPhase Transition
dc.subjectDirect Percolation
dc.subjectCriticality
dc.subjectLong-RangeTemporal Correlations
dc.titleOscilações coletivas e avalanches em redes de neurônios estocásticos
dc.typeTesis


Este ítem pertenece a la siguiente institución