dc.contributorAGUIAR, Flavio Menezes de
dc.contributorhttp://lattes.cnpq.br/7934343562431842
dc.contributorhttp://lattes.cnpq.br/1647493587621652
dc.creatorCARMO, Ricardo Batista do
dc.date2017-02-15T12:52:08Z
dc.date2017-02-15T12:52:08Z
dc.date2015-03-02
dc.identifierhttps://repositorio.ufpe.br/handle/123456789/18322
dc.descriptionCentros de periodicidade e caos (CPCs) s˜ao pontos que podem aparecer quando projetamos certo expoente de Lyapunov λ em um plano de parˆametros de um sistema dinˆamico dissipativo. Espirais de solu¸c˜oes peri´odicas (λ < 0) e ca´oticas (λ > 0) circulam alternadamente um CPC, como aquele no ter¸co inferior direito na figura da folha de rosto. Nesta disserta¸c˜ao foi desenvolvido inicialmente um programa para o c´alculo num´erico do espectro de Lyapunov de um sistema dinˆamico tridimensional (3D) gen´erico. Em seguida, CPCs foram procurados e achados nas solu¸c˜oes das equa¸c˜oes de R¨ossler, que possuem trˆes parˆametros, a, b, e c. Em particular, para b = bc = 0.17872, o CPC foi encontrado no plano a×c com coordenadas a = ac = 0.17694 e c = cc = 10.5706. Fixando a = ac e tomando c como um parˆametro de controle no intervalo 3 < c < cc, uma sequˆencia de dobramentos de per´ıodo seguida por uma sequˆencia de janelas de adi¸c˜ao de per´ıodo dentro da regi˜ao ca´otica. Ajustes por fun¸c˜oes simples de mapas de retorno de m´aximos locais em uma das vari´aveis dinˆamicas do sistema de R¨ossler permitiram a elabora¸c˜ao de um mapa discreto unidimensional Mr(x) no intervalo unit´ario, o qual faz a m´ımica sin´optica da dinˆamica do fluxo. A raz˜ao de convergˆencia para a sequˆencia de adi¸c˜ao de per´ıodo foi estimada dos ciclos superest´aveis do mapa como um valor pouco acima de 1.7, em bom acordo com o que se obt´em do sistema de R¨ossler. Uma f´ormula para a medida invariante foi obtida de um ajuste para a distribui¸c˜ao das iteradas em regime erg´odico. O correspondente expoente de Lyapunov, 0.597, est´a em bom acordo com 0.588, valor obtido da m´edia discreta de ln|Mr(xi)|.
dc.descriptionCNPq
dc.descriptionAperiodicityhub(PH)isthecommoncenterofperiodic(λ < 0)andchaotic(λ > 0) spirals which show up when a characteristic Lyapunov exponent λ of a dissipative dynamical system is projected onto a planar subset of its parameter space. The color plate in a previous page of this document shows one such PH in the lower right third. In this work Lyapunov spectra of three-dimensional dynamical systems were numericallycalculatedwithastandardalgorithmwhichreliesonrepeatedapplication of the Gram-Schmidt orghonormalization procedure on certain vectors in the phase space. PHs were then searched and found in the R¨ossler system, which has three parameters, namely, a,b, and c. In particular, for b = bh = 0.17872, a PH was found in the ca-plane with coordinates a = ah = 0.17694 and c = ch = 10.5706. By fixing a = ah and taking c as a control parameter in the interval 3 < c < ch, a complete sequence , i.e., a period-doubling sequence followed by a sequence of period-adding windows within the chaotic region, was observed. Fits to tens of return maps for local maxima in one of the dynamical variables allowed the construction of a oneparameter one-dimensional discrete map in the unit interval that synoptically mimics the dynamics of the flow. The convergence ratio for the period-adding sequence was estimated from the superstable cycles as 1.7, in good agreement with the value obtained from the R¨ossler system. At full ergodicity, a formula for the invariant measurewasobtainedfromafittothedistributionoftheiterates. Fromthatformula, we estimated a Lyapunov exponent of 0.597, which is in reasonable agreement with 0.588, the value obtained straightforwardly from the discrete iterates of the map.
dc.formatapplication/pdf
dc.languagepor
dc.publisherUniversidade Federal de Pernambuco
dc.publisherUFPE
dc.publisherBrasil
dc.publisherPrograma de Pos Graduacao em Fisica
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/
dc.subjectDinâmica não linear
dc.subjectCaos
dc.subjectExpoente de Lyapunov
dc.subjectNonlinear dynamics
dc.subjectChaos
dc.subjectLyapunov exponent
dc.titleUm mapa discreto unidimensional para o sistema de Rössler
dc.typemasterThesis


Este ítem pertenece a la siguiente institución